Cho AB cắt CE tại O . biết góc AOC = 54 độ . Tính các góc còn lại( khác 180 độ )
b, cho MN căts PQ tại K . biết góc NKP = 1/2 góc NKQ . Tính các góc trong hình ( khác 180 độ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)
\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)
\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)
Bài 2 : Bài giải
Ta có:
\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )
\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )
Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)
Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)
\(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)
\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)
Vì góc MAP = góc NAQ (đối đỉnh)
=> Góc NAQ = 125 độ
Có: góc MAP + góc PAN = 180 độ (kề bù)
=> Góc PAN = 180 độ - góc MAP
=> Góc PAN = 180 độ - 125 độ = 55 độ
Mà góc PAN = góc MAQ => Góc MAQ = 55 độ