Cho \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\). Tính \(M=\frac{ab+bc+ac}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-a\right)}\)
Đánh giá đại diện: \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)
Tương tự: \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(\Rightarrow M=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow M=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2N\left(đpcm\right)\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) (1)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{ac+bc}{abc}=\frac{ab+ac}{abc}=\frac{ab+bc}{abc}\)
\(\Rightarrow ac+bc=ab+ac=ab+bc\)
\(\Rightarrow ab=ac=bc\) (2)
Từ (1) và (2)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)
Vậy M = 1
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(\frac{ab}{a+b}=\frac{bc}{b+c}=>\frac{ab}{bc}=\frac{a}{c}=\frac{a+b}{b+c}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{a+b}{b+c}=\frac{a+b-a}{b+c-c}=\frac{b}{b}=1\)
=>a=c(1)
Tương tự: \(\frac{ab}{a+b}=\frac{ca}{c+a}=>\frac{ab}{ca}=\frac{b}{c}=\frac{a+b}{c+a}\)
Áp dụng tc dãy tỉ số bằng nhau:
\(\frac{b}{c}=\frac{a+b}{c+a}=\frac{a+b-b}{c+a-c}=\frac{a}{a}=1\)
=>b=c(2)
Từ (1)(2)=>a=b=c
=>\(M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)