K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 7 2021

Lời giải:
ĐKXĐ: $x\geq 0$

Bình phương 2 vế

$\Rightarrow 2x+9+2\sqrt{x(x+9)}=2x+5+2\sqrt{(x+1)(x+4)}$

$\Leftrightarrow 2+\sqrt{x(x+9)}=\sqrt{(x+1)(x+4)}$

Tiếp tục bình phương:

$4+x^2+9x+4\sqrt{x(x+9)}=x^2+5x+4$
$\Leftrightarrow x+\sqrt{x(x+9)}=0$

Vì $x\geq 0; \sqrt{x(x+9)}\geq 0$ nên để tổng bằng $0$ thì:

$x=\sqrt{x(x+9)}=0$

$\Leftrightarrow x=0$

Thử lại thấy đúng nên $x=0$ là nghiệm duy nhất của pt.

a:

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

=>|x-3|=3

=>x-3=3 hoặc x-3=-3

=>x=0 hoặc x=6

b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

=>\(\left|\sqrt{x-1}+1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)

=>x-1=1

=>x=2

c:

ĐKXĐ: x>4/5

PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

d: ĐKXĐ: x-4>=0 và x+1>=0

=>x>=4

PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)

=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)

=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)

=>\(\sqrt{x^2-3x-4}=14-x\)

=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196

=>x<=14 và -3x-4=-28x+196

=>x<=14 và 25x=200

=>x=8(nhận)

16 tháng 8 2023

a) \(\sqrt{x^2-6x+9}=3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)

\(\Leftrightarrow\left|x-3\right|=3 \)

TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)

Pt trở thành:

\(x-3=3\) (ĐK: \(x\ge3\))

\(\Leftrightarrow x=3+3\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)

Pt trở thành:

\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=-3+3\)

\(\Leftrightarrow x=0\left(tm\right)\)

b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))

\(\Leftrightarrow x+2\sqrt{x-1}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4-x\)

\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)

\(\Leftrightarrow4x-4=16-8x+x^2\)

\(\Leftrightarrow x^2-12x+20=0\)

\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))

\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)

\(\Leftrightarrow5x-4=4x+8\)

\(\Leftrightarrow x=12\left(tm\right)\)

NV
13 tháng 8 2020

ĐKXĐ: \(x\ge9\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x-9}=\sqrt{x-1}+\sqrt{x-4}\)

\(\Leftrightarrow2x-9+2\sqrt{x^2-9x}=2x-5+2\sqrt{x^2-4x+3}\)

\(\Leftrightarrow\sqrt{x^2-9x}=2+\sqrt{x^2-4x+3}\)

Do \(x\ge9>0\Rightarrow x^2-4x>x^2-9x\Rightarrow x^2-4x+3>x^2-9x\)

\(\Rightarrow\sqrt{x^2-4x+3}+2>\sqrt{x^2-9x}\)

Pt vô nghiệm

30 tháng 5 2022

\(ĐK:x\in R\)

\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)

Đặt \(x^2+x+1=a;a\ge0\)

\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)

(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)

\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)

\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)

\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)

Vậy \(S=\left\{0;-1\right\}\)

 

 

27 tháng 11 2021

\(a,ĐK:1\le x\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)

 

3 tháng 7 2015

đk: x >=0; 

bình phương 2 vế:

\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\Leftrightarrow x+x+9+2\sqrt{x^2+9x}=x+1+x+4+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow2\left(\sqrt{x^2+9x}-\sqrt{x^2+5x+4}\right)=-4\Leftrightarrow\sqrt{x^2+9x}-\sqrt{x^2+5x+4}=-2\Leftrightarrow\sqrt{x^2+9x}=-2+\sqrt{x^2+5x+4}\)

tiếp tục bình phương 2 vế ta được: 

\(x^2+9x=4+x^2+5x+4-4\sqrt{x^2+5x+4}\Leftrightarrow4\sqrt{x^2+5x+4}=4x-8\Leftrightarrow\sqrt{x^2+5x+4}=x-2\)

lại bình phương tiếp được:

\(x^2+5x+4=x^2-4x+4\Leftrightarrow9x=0\Leftrightarrow x=0\)(t/m đk)

 

31 tháng 7 2021

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0

24 tháng 11 2015

Điều kiện: x > -1

PT <=> \(\left(\sqrt{x+1}-1\right)+\left(\sqrt{x+4}-2\right)+\left(\sqrt{x+9}-3\right)+\left(\sqrt{x+16}-4\right)=\sqrt{x+100}-10\)

<=> \(\frac{x+1-1}{\sqrt{x+1}+1}+\frac{x+4-4}{\sqrt{x+4}+2}+\frac{x+9-9}{\sqrt{x+9}+3}+\frac{x+16-16}{\sqrt{x+16}+4}=\frac{x+100-100}{\sqrt{x+100}+10}\)

<=> \(\left(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}\right).x=0\)

<=> x = 0  (thỏa mãn)

Vì \(\sqrt{x+1}+1<\sqrt{x+100}+10\Rightarrow\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\)=

=> \(\frac{1}{\sqrt{x+1}+1}-\frac{1}{\sqrt{x+100}+10}>0\) nên \(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}>0\)

Vậy x = 0 

24 tháng 11 2015

phải gọi là quá khó che hơi j má