tính nhanh
1/2*3 + 1/6*5 + 1/10*7 + 1/14*9+..+ 1/198*101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\frac{2.6.10+6.10.14+..+194.198.202}{1.3.5+3.5.7+..+97.99.101}=\frac{8.1.3.5+8.3.5.7+..+8.97.99.101}{1.3.5+3.5.7+..+97.99.101}\)
\(=\frac{8.\left(1.3.5+3.5.7+..+97.99.101\right)}{1.3.5+3.5.7+..+97.99.101}=8\)
em cũng chịu thua
bài này lớp mấy vậy anh
A=\(\frac{2.6.10+6.10.14+...+194+198+202}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2\left(1.3.5\right)+2.2.2\left(3.5.7\right)+...+2.2.2\left(97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2.2.2\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)\(=\frac{2.2.2}{1}=8\)
Đặt \(A=\frac{1}{2.6}+\frac{1}{6.10}+...+\frac{1}{194.198}\)
\(A=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{194}-\frac{1}{198}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{198}\right)\)
\(A=\frac{1}{4}.\frac{49}{99}\)
\(A=\frac{49}{396}\)
Đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(B=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(B=\frac{1}{2}.\frac{98}{303}\)
\(B=\frac{49}{303}\)
Vậy P = A + B = \(\frac{49}{396}+\frac{49}{303}\) Bạn tự tính luôn nha máy tính mình hết pin rồi
\(P=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(P=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(4P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(4P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(4P=1-\frac{1}{101}\)
\(4P=\frac{100}{101}\)
\(P=\frac{100}{101}:4\)
\(P=\frac{25}{101}\)
Đặt A=1x3+3x5+5x7+7x9+...+99x101
6A=6x(1x3+3x5+5x7+7x9+...+99x101)
6A=1x3x6+3x5x6+5x7x6+7x9x6+...+99x101x6
6A=1x3x(5+1)+3x5x(7-1)+5x7x(9-3)+7x9x(11-5)+...+99x101x(103-97)
6A=1x3x5+1x3+3x5x7-3x5+5x7x9-3x5x7+7x9x11-5x7x9+...+99x101x103-99x101x97
6A=3+99x101x103
=>A=\(\frac{\text{3+99x101x103}}{6}\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
\(\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
= \(2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+...+\frac{1}{198.202}\right)\)
= \(2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{198}-\frac{1}{202}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
= \(\frac{1}{2}.\frac{50}{101}\)
= \(\frac{25}{101}\)
A=25/101