Cho f (x) = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Tính f (\(4-2\sqrt{3}\)) và f(\(a^2\)) với a < -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f(x)=\(\frac{1+\sqrt{1+x}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\) và a=\(\frac{\sqrt{3}}{2}\).Tính f(a)
\(a=\dfrac{4}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\)
\(=4:\dfrac{4\sqrt{3}}{3}\)
\(=\sqrt{3}\)
\(f\left(x\right)=\dfrac{\sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1}}{\sqrt{\sqrt{3}+1}-\sqrt{\sqrt{3}-1}}\)
\(=\dfrac{\left(\sqrt{3}+1+\sqrt{3}-1+2\cdot\sqrt{2}\right)}{2}\)
\(=\sqrt{3}+\sqrt{2}\)
\(a=\sqrt{2}+\sqrt{7-2\sqrt{5}-1}+1\)
\(=\sqrt{2}+\sqrt{5}-1+1=\sqrt{2}+\sqrt{5}\)
f(x)=x^4(x+2)-14x^2(x+2)+9(x+2)+1
=(x+2)(x^4-14x^2+9)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left[\left(7+2\sqrt{10}\right)^2-14\left(7+2\sqrt{10}\right)+1\right]\)+1
\(=\left(\sqrt{2}+\sqrt{5}+2\right)\left(89+28\sqrt{10}-84-28\sqrt{10}+1\right)\)+1
=6(căn 2+căn 5+1)+1