K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

c.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)

\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)

\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))

\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)

\(\Rightarrow x^3+7x^2+4x-24=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)

Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)

Ta có:

\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

21 tháng 5 2023

a) `sqrt(x^2-6x _9) = 4-x`

`<=> sqrt[(x-3)^2] =4-x`

`<=> |x-3| =4-x ( đk :x<=4)`

`<=> |x-3| = |4-x|`

`<=> [(x-3 =4-x),(x-3 = x-4):}`

`<=>[(x = 7/2(t//m)),(0=-1(vl)):}`

Vậy `S = {7/2}`

b) `sqrt(x^2 -9) + sqrt(x^2 -6x +9) =0(đk : x>=3(hoặc) x<=-3)`

`<=>sqrt(x^2 -9) =- sqrt(x^2 -6x +9) `

`<=>(sqrt(x^2 -9))^2 =(- sqrt(x^2 -6x +9))^2`

`<=> x^2 -9 = x^2 -6x +9`

`<=> 6x = 9+9 =18`

`<=> x=3(t//m)`

Vậy `S={3}`

 

21 tháng 5 2023

c) `sqrt(x^2 -2x+1) + sqrt(x^2-4x+4) =3`

`<=> sqrt[(x-1)^2] +sqrt[(x-2)^2] =3`

`<=> |x-1| +|x-2| =3`

xét `x<1 =>{(|x-1| =1-x ),(|x-2|=2-x):}`

`=> 1-x +2-x =3`

`=> x = 0(t//m)`

xét `1<=x<2 => {(|x-1|=x-1),(|x-2|= 2-x):}`

`=> x-1 +2-x =3`

`=>1=3 (vl)`

xét `x>=2 => {(|x-1| =x-1),(|x-2|=x-2):}`

`=> x-1+x-2 =3`

`=> x=3(t//m)`

Vậy `S = {0;3}`

16 tháng 9 2021

a) ĐKXĐ: x <= 2/3

Pt --> 2 - 3x = 4

<=> 3x = -2

<=> x = -2/3 (thỏa)

16 tháng 9 2021

b) ĐKXĐ: x >= 2

Pt --> x^2 + 4x + 4 = x^2 - 4x + 4

<=> 8x = 0<=> x = 0(loại)

17 tháng 5 2021

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

17 tháng 5 2021

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

1 tháng 9 2017

Bạn gần như trùng tên với mình đấy.Ket ban voi minh nha.

1 tháng 9 2019

\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)

\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)

\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\) 

\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)

\(\Rightarrow x^4=x^3+x\sqrt{3}\)

\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)

23 tháng 7 2021

a) ĐKXĐ: \(x^2+3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\).

PT \(\Leftrightarrow10-\left(x^2+3x\right)=3\sqrt{x^2+3x}\). (*)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\((*)\Leftrightarrow a^2+3a-10=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\).

Với \(a=2\Rightarrow\sqrt{x^2+3x}=2\Leftrightarrow x^2+3x-4=0\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\).

Vậy x = 1; x = -4