K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};\frac{1}{5^2}<\frac{1}{4.5};....;\frac{1}{100^2}<\frac{1}{99.100}\)

=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A<\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)

Vâyk...

24 tháng 8 2015

ta thấy:

1/3^2<1/2.3

1/4^2<1/3.4

.................

1/100^2<1/99.100

=>1/3^2+1/4^2+1/5^2+.........1/100^2<1/2.3+1/3.4+1/4.5+....+1/99.100

=1/2-1/3+1/3-1/4+.........+1/99-1/100

=1/2-1/100<1/2(đpcm)

 
21 tháng 10 2017

neu bot mot canh hinnh vuong di 7 m va bot mot canh khac di 25 m thi duoc mot hinh chu nhat co chieu dai gap 3 lan chieu rong tinh chu vi va dien h hinh vuong

16 tháng 6 2020

Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\)   (8 số hạng)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)

16 tháng 6 2020

\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

8 tháng 5 2021

fan bé sans à

8 tháng 5 2021

wuttttt

11 tháng 3 2017

Bài 1:

Ta có: \(\frac{1}{51}>\frac{1}{100}\)

           \(\frac{1}{52}>\frac{1}{100}\)

......

             \(\frac{1}{99}>\frac{1}{100}\)

Công vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)        (1)

Lại có: \(\frac{1}{51}< \frac{1}{50}\)

            \(\frac{1}{52}< \frac{1}{50}\)

.....

             \(\frac{1}{100}< \frac{1}{50}\)

Cộng vế với vế lại ta được:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\)             (2)

Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)

11 tháng 3 2017

Bài 2:

Đặt S = 1/41 + 1/42 +...+ 1/80

S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng

Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)\(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)\(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)

=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)

=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)

=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá