cm 3(x+y+z)^2+1>=3xyz (x,y>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Từ \(a+b+c=0\Rightarrow a+b=-c\)
Xét hiệu \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\left(I\right)\)
Thay \(a+b=-c;a+b+c=0\left(GT\right)v\text{ào}\left(I\right)\) ta được
\(a^3+b^3+c^3-3abc=\left(-c\right)^3+c^3-3ab.0\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(\text{Đ}PCM\right)\)
Vậy \(a^3+b^3+c^3=3abc\) với \(a+c+b=0\)
Ta có: \(x+y+z=0\Rightarrow x+y=-z\)
\(x+y+z=0\Rightarrow\left(x+y+z\right)^3=0\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3=0\)\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)+c^3=0\)
\(\Leftrightarrow\left(x+y\right)^3+c^3=0\) ( vì x + y+z =0)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+z^3=0\)
\(\Leftrightarrow x^3+y^3+z^3+3xy\left(x+y\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2+3xy\left(-z\right)=0\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\) ( đpcm)
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)
\(P=3a^2+b^2+3c^2\)
Biểu thức này chỉ có min, không có max
Có :
x3 + y3 + z3 = 3xyz
x3 + y3 + z3 - 3xyz = 0
(x + y)3 - 3.xy.(x + y) + z3 - 3xyz = 0
(x + y)3 + z3 - 3xy.(x + y + z) = 0
(x + y + z).[(x + y)2 - (x + y).z) + z2] - 3xy(x + y + z) = 0
(x + y + z).[x2 + 2xy + y2 - zx - yz + z2] - 3xy(x + y + z) = 0
(x + y + z).[x2 + y2 + z2 - xy - yz - zx] = 0
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
Với \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
Ta có: \(x^3+y^3+z^3=3xyz\)
\(\Rightarrow x^3+y^3+z^3-3xyz=0\)
\(\Rightarrow x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x+y=-z\)\(\Rightarrow x+y+z=0\left(đpcm\right)\)( P/s cx ko chắc lắm :P )
That's very easy
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+y^3+3x^2y+3y^2x\right)+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\end{cases}}\)
Lại có : \(x^2+y^2+z^2-xy-yz-xz=0\)
Nhân 2 lên , nhóm vào ta được các cặp số : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\left(2\right)\)( làm tắt )
Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall y;z\\\left(x-z\right)^2\ge0\forall x;z\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\left(3\right)\)
Từ ( 2 ) ; ( 3 ) \(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Rightarrow x=y=z}\left(4\right)\)
Từ (1) ; (4) => đpcm
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
=> 1/xy + 1/yz + 1/xz = 0
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz