K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

bn pải có vip mới đc cô Loan giúp

8 tháng 7 2017

Hỏi thầy Bách ý tao còn câu 2

26 tháng 8 2016

Bài 1:

 Ta có: AE = AD (gt)

 => Tam giác AED là tam giác cân tại A

 => Góc AED = góc ADE = \(\frac{180-A}{2}\)

  Ta có: tam giác ABC cân tại A

  => Góc B = góc C = \(\frac{180-A}{2}\)

=> Góc AED = góc B

Mà 2 góc này ở vị trí đồng vị => ED//BC => BEDC là hình thang

Ta có: góc B = góc C ( tam giác ABC cân tại A)

 => BEDC là hình thang cân

Mình chứng minh tời đây chắc bạn hiểu rồi ha, câu b và c dễ ẹt

9 tháng 8 2019

Câu hỏi của Hoàng Anh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

27 tháng 6 2017

 Bài 1:

Vì AD // BC =>  Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.

=> Góc A = (180 + 20) : 2 = 100 độ

Góc B = 80 độ. 

Vì AD // BC => Góc C cộng góc D bằng 180 độ .

Mà góc D bằng hai lần góc C => 3C = 180 độ

=> Góc C bằng 60 độ. Góc D bằng 120 độ.

11 tháng 9 2018

Bài 2 bạn xem hướng dẫn ở đây nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

4 tháng 4 2021

a, Xét △DAB và △CBD có:

∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)

=> △DAB ∼ △CBD (g.g)

Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ

mà ∠ADB=∠DCB => ∠DCB=30 độ (1)

Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)

Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ

=> △IDC cân tại I

 

 

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

11 tháng 9 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

Xét ΔIAB và ΔICD có

góc IAB=góc ICD
goc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IB/ID=AB/CD=BM/MC

=>IM//DC

=>IM vuông góc AD