K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )

 

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

17 tháng 5 2021

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

17 tháng 5 2021

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

8 tháng 11 2017

a) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)

Đặt \(\sqrt{x^2-3x+3}=a;\sqrt{x^2-3x+6}=b\left(a;b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\b^2-a^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(b+a\right)\left(b-a\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=3\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\) (nhận)

\(\Rightarrow\sqrt{x^2-3x+3}=1\)

\(\Leftrightarrow x^2-3x+3=1\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (nhận)

b) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)

Đặt \(\sqrt{3-x+x^2}=a;\sqrt{2+x-x^2}=b\left(a;b>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a^2+b^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\\left(b^2+2b+1\right)+b^2-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2\left(b-1\right)\left(b+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) (vì \(b+2>0\)) (nhận)

\(\Rightarrow\sqrt{2+x-x^2}=1\)

\(\Leftrightarrow2+x-x^2=1\)

\(\Leftrightarrow x^2-x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) (nhận)

8 tháng 11 2017

d) \(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)

\(\Leftrightarrow2\left(x+\dfrac{1}{4x}\right)+4=5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)\)

\(\Leftrightarrow2\left[\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-1\right]-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+4=0\)

\(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+2=0\)

Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Rightarrow2a^2-5a+2=0\)

\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(\text{nhận}\right)\\a=\dfrac{1}{2}\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{2+\sqrt{2}}{2}\\\sqrt{x}=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\) (nhận)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\) (nhận)