K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Lưu ý: \(1=sin^2a+cos^2a\)

Do đó:

a.

\(1-sin^2a=\left(sin^2a+cos^2a\right)-sin^2a=cos^2a\)

b.

\(sina-sina.cos^2a=sina\left(1-cos^2a\right)=sina\left(sin^2a+cos^2a-cos^2a\right)\)

\(=sina.sin^2a=sin^3a\)

c.

\(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a+cos^2a-cos^2a=sin^2a\)

19 tháng 12 2021

a: Xét tứ giác ABDC có

N là trung điểm của BC

N là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

18 tháng 7 2021

\(=>A+B-C+D=a+b-5-b-c+1-b+c+4+b-a\)

\(=-5+4=-1\)

18 tháng 7 2021

undefined

13 tháng 9 2016

4p(p-a)=2(a+b+c)[(b+c-a)/2]=(a+b+c)(c+b-a)(1)

b2+c2+2ab-a2=(a+b+c)(c+b-a)(2)

từ (1) và (2) suy ra b2+c2+2ab-a2=4p(p-a) 

20 tháng 1 2022

Ta có: a<b, c<d =>a+c<b+d.

20 tháng 1 2022

a+c<b+d

vì a với c nhỏ hơn hơn b với d

nên a + c<b+d

11 tháng 8 2016

Theo đề bài, ta có: 

0,2a=0,3b=0,4c và 2a+3b-5c=-1,8

\(\Rightarrow\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}\) và 2a+3b-5c=-1,8

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}=\frac{2a+3b-5c}{2.0,2+3.0,3-5.0,4}=\frac{\left(-1,8\right)}{\left(-0,7\right)}=\frac{18}{7}\)

  • \(\frac{a}{0,2}=\frac{18}{7}.0,2=\frac{18}{35}\)
  • \(\frac{b}{0,3}=\frac{18}{7}.0,3=\frac{27}{35}\)
  • \(\frac{c}{0,4}=\frac{18}{7}.0,4=\frac{36}{35}\)

Vậy \(x=\frac{18}{35},y=\frac{27}{35},z=\frac{36}{35}\)

T mk nhé bạn ^...^ ^_^

11 tháng 8 2016

Ta có : \(0,2a=0,3b=\frac{a}{0,3}=\frac{b}{0,2}\)

            \(0,3b=0,4c=\frac{b}{0,4}=\frac{c}{0,3}\)

Quy đòng : \(\frac{a}{0,3}=\frac{b}{0,2};\frac{b}{0,4}=\frac{c}{0,3};\frac{a}{0,12}=\frac{b}{0,08}=\frac{c}{0,06}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

Làm tiếp đi 

10 tháng 3 2022

???

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE

=>ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

11 tháng 4 2022

\(f\left(0\right)=c=8\)

\(f\left(1\right)=a+b+c=a+b+8=9\Rightarrow a+b=1\) (1)

\(f\left(-1\right)=a-b+c=a-b+8=-11\Rightarrow a-b=-19\) (2)

-Từ (1) và (2) suy ra: \(a=-9;b=10\)

 

11 tháng 4 2022

f(0)=c=8f(0)=c=8

f(1)=a+b+c=a+b+8=9⇒a+b=1f(1)=a+b+c=a+b+8=9⇒a+b=1 (1)

f(−1)=a−b+c=a−b+8=−11⇒a−b=−19f(−1)=a−b+c=a−b+8=−11⇒a−b=−19 (2)

-Từ (1) và (2) suy ra: a=−9;b=10

23 tháng 6 2019

\(\left(a+b\right).\left(b+c\right).\left(c-a\right)+\left(b+c\right).\left(c+a\right).\left(a-b\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left[\left(b+c\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(ac-a^2+bc-ab+a^2-ab+ac-bc\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(a+b\right).2a.\left(b-c\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(b-c\right).\left(-2a+c+a\right)=\left(a+b\right).\left(b-c\right).\left(c-a\right)\)

23 tháng 6 2019

giai lai:

\(\left(b+c\right).\left[\left(a+b\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(b+c\right).2a.\left(b-c\right)+\left(b-c\right).\left(ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-2ab-2ac+ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-ab-ac+bc+a^2\right)\)

\(=\left(b-c\right).\left(a+b\right).\left(a-c\right)\)