chúng minh
(a^2 +b^2).(x^2+y^2) - (ax+by)^2=(ay-bx)^2Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
VT = (x2 + y2)(a2 + b2)
= x2a2 + x2b2 + y2a2 + y2b2
= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)
= (ax + by)2 + (ay - bx)2
=> VT = VP => đpcm
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\)
Vậy ta có điều phải chứng minh.
a) Ta có: \(\left(a+b\right)^2=4ab\)<=> \(a^2+b^2+2ab=4ab\)
<=> \(a^2-2ab+b^2=0\)
<=> \(\left(a-b\right)^2=0\)=> a=b (đpcm)
b) Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
<=> \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
<=> \(a^2y^2+b^2x^2-2axby=0\)
<=>\(\left(ay-bx\right)^2=0\)
<=>ay=bx(đpcm)
Ta có :
A= ax+ay+bx+by+x+y
= a(x+y)+b(x+y)+x+y
= (a+b+1)(x+y)
= (\(\dfrac{1}{3}\)+1).\(\dfrac{-9}{4}\)
= \(\dfrac{4}{3}.\dfrac{-9}{4}\)
= -3
B= ax+ay-bx-by-x-y
= a(x+y)-b(x+y)-(x+y)
= (a-b-1)(x+y)
= (\(\dfrac{1}{2}\)-1).\(\dfrac{1}{2}\)
= \(\dfrac{-1}{2}.\dfrac{1}{2}\)
= \(\dfrac{-1}{4}\)
a) \(ax+ay+bx+by=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)=\left(-2\right).17=-34\)
b) \(ax-ay+bx-by=a\left(x-y\right)+b\left(x-y\right)=\left(a+y\right)\left(x-y\right)=\left(-7\right).\left(-1\right)=7\)
a) suy ra a.(x+y)+b.(x+y)
suy ra (x+y) (a+b)
suy ra 17. (-2) = 34
b) suy ra a.(x-y) + b.(x-y)
suy ra (a+b) (x-y)
suy ra (-7).(-1)
mk làm bậy ko bít đúng hay ko
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
Trả lời:
(a2 + b2 ) ( x2 + y2 ) - (ax + by )2
= a2x2 + a2y2 + b2x2 + b2y2 - [ ( ax )2 + 2.ax.by + ( by )2 ]
= a2x2 + a2y2 + b2x2 + b2y2 - ( a2x2 + 2axby + b2y2 )
= a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2
= a2y2 - 2axby + b2x2
= ( ay )2 - 2aybx + ( bx )2
= ( ay - bx )2 (đpcm)