bài 1 chứng minh biểu thứ sau luôn âm : D=4x-10-x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )2 - 6
Vì - (x - 2 )2 \(\le0\)nên - (x - 2 )2 - 6 \(\le-6< 0\)
Vậy D = 4x - 10 - x2 luôn âm (dpcm)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi
a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0
b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)
\(=\dfrac{3x\left(-x^2\right)}{3x}+\dfrac{2}{3x}-\dfrac{3x}{3x}=\dfrac{-3x^3+2-3x}{3x}\)
\(=\dfrac{-x^2+2-3x}{1}=-\left(x^2-2+3x\right)\)
vậy bt A luôn......
\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)
\(4x^2-8x+5\)
\(=\left(2x\right)^2-2×2×2x+1+4\)
\(=\left(2x-1\right)^2+1\)
\(\Rightarrow\left(2x-1\right)^2+1>0\)
Vậy biểu thức trên luôn dương !!!
C = -3x2 - 6x - 12
= -3( x2 + 2x + 1 ) - 9
= -3( x + 1 )2 - 9 ≤ -9 < 0 ∀ x ( đpcm )
D = -4x2 - 12x - 15
= -4( x2 + 3x + 9/4 ) - 6
= -4( x + 3/2 )2 - 6 ≤ -6 < 0 ∀ x ( đpcm )
E = -30 - 5x2 + 10x
= -5( x2 - 2x + 1 ) - 25
= -5( x - 1 )2 - 25 ≤ -25 < 0 ∀ x ( đpcm )
\(C=-3x^2-6x-12\)
\(\Rightarrow C=-\left(3x^2+6x+12\right)\)
\(\Rightarrow C=-\left(3x^2+6x+3+9\right)\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x+1\right)^2+9\ge9\)
\(\Rightarrow C=-\left[3\left(x+1\right)^2+9\right]\le-9\)
=> Đpcm
\(D=-4x^2-12x-15\)
\(\Rightarrow D=-\left(4x^2+12x+15\right)\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{3}{2}\right)^2+6\ge6\)
\(\Rightarrow D=-\left[4\left(x+\frac{3}{2}\right)^2+6\right]\le-6\)
=> Đpcm
\(E=-30-5x^2+10x\)
\(\Rightarrow E=-\left(5x^2-10x+30\right)\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow5\left(x-1\right)^2+25\ge25\)
\(\Rightarrow E=-\left[5\left(x-1\right)^2+25\right]\le-25\)
=> Đpcm
\(D=4x-10-x^2\)
=\(-\left(x^2-4x+10\right)\)
\(-\left(x^2-2\cdot x\cdot2+2^2+6\right)\)
=\(-\left(\left(x-2\right)^2+6\right)\)
\(=-\left(x-2\right)^2-6\)
ma \(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-6\le-6\)
\(D\le-6\Leftrightarrow D