Cho tam giác ABC vuông tại A và BC = 2AB. Tính số đo các góc của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D 1 2 3
Gọi D là chân đường phân giác kẻ từ B
M là trung điểm AC
+) Theo đề bài BC=2AB => AB=BM=MC (1)
+) \(\widehat{B}=2.\widehat{C}\)
=> \(\widehat{B}_1=\widehat{B_2}=\widehat{C_3}\)(2)
=> Tam giác BDC cân tại D có DM là đường trung tuyến
=> DM vuông BC
+) xét tam giác ADB và tam giác MDB
có: BD chung
\(\widehat{B}_1=\widehat{B_2}\) (theo 2)
AB=BM (theo 1)
=> Hai tam giác ADB và MDB bằng nhau
=> góc BAD= góc BMD= 90 độ
=> \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^o-90^o=90^o\Rightarrow3\widehat{C}=90^o\Rightarrow\widehat{C}=30^o\Rightarrow\widehat{B}=2.\widehat{C}=60^o\)
a: ΔABC vuông tại A
mà AE là trung tuyến
nên EA=EB=BC/2
mà BA=BC/2
nên EA=EB=BA
=>ΔBAE đều
b: ΔBAE đều
nên góc ABC=60 độ
=>góc ACB=30 độ
=>góc AEC=180-2*30=120 độ
Gọi M là trung điểm của BC, ta có:
AM = MB = 1/2 BC = a (tính chất tam giác vuông)
Suy ra MA = MB = AB = a
Suy ra ∆ AMB đều ⇒ ∠ (ABC) = 60 0
Mặt khác: ∠ (ABC) + ∠ (ACB) = 90 0 (tính chất tam giác vuông)
Suy ra: ∠ (ACB) = 90 0 - ∠ (ABC) = 90 0 – 60 0 = 30 0
Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2
⇒ A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3
Vậy S A B C = 1/2 .AB.AC
= 1 2 a . a 3 = a 2 3 2 ( đ v d t )
a: Kẻ DK\(\perp\)BC
Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>BA=BK
mà \(BA=\dfrac{1}{2}BC\)
nên \(BK=\dfrac{1}{2}CB\)
=>K là trung điểm của BC
Xét ΔDBC có
DK là đường cao
DK là đường trung tuyến
Do đó: ΔDBC cân tại D
b: ΔDBC cân tại D
=>\(\widehat{DBC}=\widehat{DCB}\)
mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)
nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)
=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)
=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)
\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)
ta có \(\widehat{A}=90^0\)
mà \(cos\widehat{B}=\frac{BA}{BC}=\frac{BA}{2AB}=\frac{1}{2}\Rightarrow\widehat{B}=60^0\)
\(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-60^0=30^0\)