K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

x2 - 2.(m+1)x + 2m + 1 = 0

\(\Delta^'\) = m2 + 2m + -2m -1 = m2 \(\ge0\forall m\)

=> pt có 2 nghiệm x1 , x2 \(\Leftrightarrow m\ne0\)

Theo hệ thức vi -ét , ta có: x1 + x2 = 2(m+1) , x1.x2 = 2m + 1

Ta có 0< x1 < x2 < 3

\(\Rightarrow\left\{{}\begin{matrix}x1.x2>0\\\left(x1-3\right).\left(x2-3\right)>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2m+1>0\\x1.x2-3.\left(x1+x2\right)+9>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{-1}{2}\\2m+1-6m-6+9>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{-1}{2}\\m< 1\end{matrix}\right.\)

\(\Rightarrow\frac{-1}{2}< m< 1\)

#mã mã#

23 tháng 12 2019

e) \(\frac{5}{x}< 1.\)

Để \(\frac{5}{x}< 1\Leftrightarrow\frac{5}{x}\le0.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{5}{x}=0\\\frac{5}{x}< 0\end{matrix}\right.\)

\(5>0.\)

\(\Rightarrow\frac{5}{x}\ne0.\)

\(\Rightarrow\frac{5}{x}< 0.\)

\(\Rightarrow\) Tử mẫu phải trái dấu

\(\Rightarrow x< 0.\)

Vậy \(x< 0\) thì \(\frac{5}{x}< 1.\)

Chúc bạn học tốt!

23 tháng 12 2019

a)\(1-2x< 7\Leftrightarrow-2x< 6\Leftrightarrow x>-3\)

b)\(\left(x-1\right)\left(x-2\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

c)\(\left(x-2\right)^2.\left(x+1\right).\left(x-4\right)< 0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)< 0\) (vì \(\left(x-2\right)^2\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\x-4>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1>0\\x-4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>-1\\x< 4\end{matrix}\right.\)(chọn)

\(\Leftrightarrow-1< x< 4\)

d)\(\frac{x^2.\left(x-3\right)}{x-9}< 0\)(ĐK:\(x\ne9\))

\(\Leftrightarrow\frac{x-3}{x-9}< 0\)(vì \(x^2\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x-3< 0\\x-9>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3>0\\x-9< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\)

\(\Leftrightarrow3< x< 9\)

e)\(\frac{5}{x}< 1\)(ĐK:\(x\ne0\))

\(\Leftrightarrow\frac{5}{x}-1< 0\)

\(\Leftrightarrow\frac{5-x}{x}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-x< 0\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}5-x>0\\x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>5\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 5\\x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 0\end{matrix}\right.\)

Giải là phải giải cho hết chứ :)

2 tháng 2 2017

a, Vì : -3 ( 1 - x ) < 0

\(\Rightarrow1-x< 0\Rightarrow x>1\)

Vậy x > 1

b, Vì : \(\left(x+1\right)\left(3-x\right)>0\)

\(\Rightarrow\left\{\begin{matrix}x+1>0\\3-x>0\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x>-1\\x>-3\end{matrix}\right.\) \(\Leftrightarrow x>-1\)

Hoặc : \(\left\{\begin{matrix}x+1< 0\\3-x< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x< -1\\x< -3\end{matrix}\right.\) \(\Leftrightarrow x< -3\)

Vậy x > -1 hoặc x < -3

c, Vì : \(\left(x+1\right)\left(x-5\right)< 0\)

=> x + 1 và x - 5 trái dấu

Mà : x + 1 > x - 5 \(\Rightarrow\left\{\begin{matrix}x-5< 0\\x+1>0\end{matrix}\right.\) \(\Leftrightarrow-1< x< 5\)

Vậy -1 < x < 5

d, và e, tự làm

a: (x-3)(x-2)<0

=>x-2>0 và x-3<0

=>2<x<3

b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)

=>(x+3)(x+4)>=0

=>x+3>=0 hoặc x+4<=0

=>x>=-3 hoặc x<=-4

c: \(\dfrac{x-1}{x-2}\ge0\)

=>x-2>0 hoặc x-1<=0

=>x>2 hoặc x<=1

d: \(\dfrac{x+3}{2-x}>=0\)

=>\(\dfrac{x+3}{x-2}< =0\)

=>x+3>=0 và x-2<0

=>-3<=x<2

4 tháng 2 2019

\(x\left(x-2\right)< 0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left(0;2\right)\end{matrix}\right.\)

Vậy \(x\in\left(0;2\right)\) thỏa mãn.

\(x\left(x-2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(2;+\infty\right)\\x\in\left(-\infty;0\right)\end{matrix}\right.\)

Vậy \(x\in\left(2;+\infty\right)\cup\left(2;+\infty\right)\) thỏa mãn.

4 tháng 2 2019

\(\left(x-1\right)\left(x+3\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(1;+\infty\right)\\x\in\left(-\infty;-3\right)\end{matrix}\right.\)

Vậy.....

\(\left(x-1\right)\left(x+3\right)< 0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>-3\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(3-;1\right)\\x\in\varnothing\end{matrix}\right.\)

Vậy....

NV
1 tháng 5 2020

1.

\(\Delta'=1-m>0\Rightarrow m< 1\)

Để pt có 2 nghiệm t/m đề bài

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)

2. Để pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)

Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)

Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)

3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)

Để pt có 2 nghiệm thỏa mãn đề bài

\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)

\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)