Cho tứ giác ABCD có góc: A + C = 180 độ và B + D = 180 độ.Các cạnh AD và BC cắt nhau tại E. AB và DC cắt nhau tại F. Phân giác của 2 góc CED và góc AFD cắt nhau tại M. Chứng minh FM vuông góc EM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
B+BEF+BFE=180
D+DEF+DFE=180
mà B+D=180=>BEF+BFE+DEF+DFE=180
(BEF+BFE+DEF+DFE)/2=90
mà (BEF+DEF)/2=MEF;(BFE+DFE)/2=MFE
=>MEF+MFE=90=>EMF=90
a/Xét tứ giác ABCD có:
Góc C+D+DAB+CBA=360 độ
-> Góc C+D=3600-(DAB+CBA) (1)
Xét tam giác AEB có:
Góc AEB=1800-(EAB+EBA)
\(=180^o-\left(\frac{DBA}{2}+\frac{CBA}{2}\right)\)
\(=\frac{360-\left(DAB+CBA\right)}{2}\)
\(\Rightarrow AEB=360^o-\left(DAB+CBA\right)\) (2)
Từ (1) và (2) suy ra:
Góc AEB=D+C2D+C2
Kéo dài CA thành đường thẳng x, BD thành đường thẳng y.
Có: Góc CAB+BAx=1800
ABC+ABy=1800
-> Góc CAB=3600-(BAx+ABy) (3)
Xét tam giác AFB:
Góc AFB=1800-(FAB+FBA)
\(=180^o-\left(\frac{BAx+ABy}{2}\right)\)
\(\Rightarrow\frac{360-BAx+ABy}{2}\)
→2⋅AFB=3600−(Bax+ABy)→2⋅AFB=3600−(Bax+ABy) (4)
Từ (3) và (4) suy ra:
\(2.AFB=A+B\)
\(_{\Rightarrow AFB=\frac{A+B}{2}}\)
http://pitago.vn/question/cho-tu-giac-abcd-co-cac-goc-bu-nhau-hai-duong-thang-ad-bc-49638.html
trong link này có hình
chúc học tốt