Giup tớ giải bài này với....Giai phương trinh:
\(3x^4+7x^3+7x+3=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-7x^3+9x^2-7x+2=0\)
\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)
\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)
Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)
Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
1: Ta có: \(x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
2: Ta có: \(x^2+7x+12=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
3: Ta có: \(x^2+8x+15=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
4: Ta có: \(x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
\(3x^4+7x^3+7x+3=0\)
\(\Leftrightarrow3x^4+9x^3+3x^2-2x^3-6x^2-2x+3x^2+9x+3=0\)
\(\Leftrightarrow3x^2\left(x^2+3x+1\right)-2x\left(x^2+3x+1\right)+3\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(3x^2-2x+3\right)=0\)
Mà \(3x^2-2x+3=3\left(x-\frac{1}{3}\right)^2+\frac{8}{3}>0\forall x\)
\(\Rightarrow x^2+3x+1=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-3}{2}\\x=\frac{-\sqrt{5}-3}{2}\end{cases}}\)
C1:Dễ nhận thấy x=1 là nghiệm ta nhóm cả 2 vế để trên tử số xuất hiện nhân tử chung x-1 rồi giải phương trình
C2: Đặt ẩn phụ căn bậc 3 của (16x^2+6x+2)=t suy ra 16x^2+6x+2=3t^3 (1)thay vào ta có
3x^3-7x^2+6x+4=3t
3x^3+9x^2-16x^2-6x+12x-2+6=3t
3x^3+9x^2+12x-3t^3+12x+6-3t=0
x^3+3x^2+4x-t^3+2-3t=0
(x^3+3x^2+3x+1)-t^3+x+1-t=0
(x+1)^3-t^3+x+1-t=0
(x+1-t)((x+1)^2+(x+1)t+t^2)+x+1-t=0
(x+1-t)((x+1)^2+(x+1)t+t^2+1)=0
Dễ thấy (x+1)^2+(x+1)t+t^2+1>0 với mọi x,t nên x+1-t=0 là nghiệm
suy ra t=x+1 thay vào(1) ta có
16x^2+6x+2=3(x+1)^3
3x^3-7x^2+3x+1=0
(x-1)(3x^2-4x-1)=0
Giải ra ta có các nghiệm x=1; x=(2+căn7)/3 và x=(2-căn7)/3
dung day giup minh muon gui cau hoi de moi nguobg tra loi o day