mk đang cần gấp
Viết dạng tổng quát của số tự nhiên b chia cho 7 dư 5
viết dạng tổng quát của ba số lẻ liên tiếp
chứng minh rằng tổng của 4 số lẻ liên tiếp luôn chia hết cho 8
chứng minh rằng tổng 4 số chẵn liên tiếp không chia hết cho 8
mk sẽ tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi 3 số đó là a; a+1; a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Tương tự câu b, c, d nha
a) Xét 3 số tự nhiên liên tiếp a; a+1 ; a +2
Nếu a chia hết cho 3 thì a=3k (k thuộc N) khi đó a+1= 3k+1, còn a+2=3k+2 là những số không chia hết cho 3
Nếu a=3k+1 thì a+1=3k+2 không chia hết cho 3 còn a+2=3k+3 chia hết cho 3
Nếu a=3k+2 thì a+2=3k+4 không chia hết cho 4, còn a+1=3k+3 chia hết cho 3
a) Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2 ( \(a\in N\))
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)=3a+3\)
Mà \(3a⋮3,3⋮3\Rightarrow\left(3a+3\right)⋮3\left(\text{đ}pcm\right)\)
b) Gọi 4 số tự nhiên liên tiếp là a, a+1, a+2, a+3 ( \(a\in N\))
\(\Rightarrow a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4\); 6 không chia hết cho 4 => (4a+6) không chia hết cho 4(đpcm)
a, n-2;n;n+2 ( n là số tự nhiên lẻ >= 3 )
b,n(n+2)-n(n-2) = 20 <=> n(n+2-n+2)=20
<=> 4n = 20 <=> n=5
vậy 3 số đó là 3,5,7
(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1(2n+3)(2n+5)−(2n+1)(2n+3)=20(4n2+10n+6n+15)−(4n2+6n+2n+3)=204n2+10n+6n+15−4n2−6n−2n−3=208n+12=208n=8⇔x=1
Vậy ba số tự nhiên lẻ tiên tiếp cần tìm là 3(=2.1+1);5(=2.1+2);7(=2.1+5)
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
3+5+7 = 15 không chia hết cho 6
4+6+8=18 chia hết cho 6
8+10+12=30 chia hết cho 10
13+15+17=45 chia 10 dư 5
k mình nha!!!!!!!!!!
Gọi 3 số lẻ liên tiếp không chia hết cho 6 là: 6k+1;6k+3;6k+5
Tông của 3 số lẻ liên tiếp ko chia hết cho 6 là: 6k+1+6k+3+6k+5
6k+1+6k+3+6k+5=6k.3+8
Vì 8 không chia hết cho 6 =>6k.3+8 ko chia hết cho 6
Vậy tổng ba số lẻ liên tiếp ko chia hết cho 6
.
Gọi 3 số chẵn chia hết cho 6 là:6k;6k+2;6k+4
Tổng của 3 số chẵn chia hết cho 6 là:6k+6k+2+6k+4
6k+6k+2+6k+4=6k.3+6
Vì 6 chia hết cho 6 => 6k.3+6 chia hết cho 6
Vậy tổng 3 số tự nhiên chẵn liên tiếp chia hết cho 6
.
Gọi 5 số chẵn liên tiếp chia hết cho 10 là: 10k;10k+2;10k+4;10k+6;10k+8
Tổng 5 chẵn liên tiếp chia hết cho 10 là:10k+10k+2+10k+4+10k+6+10k+8=10k.5+30
Vì 30 chia hết cho 10 => 10k.5+30 chia hết cho 10
Vậy tổng của năng số chẵn liên tiếp chia hết cho 10
.
Gọi 5 số lẻ liên tiếp không chia hết cho 10 là: 10k+1;10k+3;10k+5;10k+7;10k+9
Tổng của 5 số lẻ liên tiếp ko chai hết cho 10 là: 10k+1+10k+3+10k+5+10k+7+10k+9
10k+1+10k+3+10k+5+10k+7+10k+9=10k.5+25
Vì 25 : 10 ( dư 5) => 10k.5+25 : 10 (dư 5)
Vậy tổng của 5 số lẻ liên tiếp chia cho 10 (dư 5)
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )
1:
a: A chia hết cho 2
=>x+52+64 chia hết cho 2
=>x chia hết cho 2
=>\(x\in B\left(2\right)\)
b: B không chia hết cho 9
=>x+63+54 không chia hết cho 9
=>x+117 không chia hết cho 9
=>
\(x\notin B\left(9\right)\)
2:
a: a+1;a+2;a+3;a+4
b: a+1+a+2+a+3+a+4
=4a+10
=4a+8+2
=4(a+2)+2 không chia hết cho 4
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)