K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Lần sau bạn viết cẩn thận hơn nhé, như vậy là tôn trọng người khác, và người khác sẽ giúp bạn.

Từ phương trình đầu ta suy ra \(x^2-z^2-1\vdots3\to z\vdots3\)\(x\)  không chia hết cho 3. (Vì nếu \(x\vdots3\) thì \(z^2+1\vdots3\), mâu thuẫn do số chính phương chia 3 chỉ dư 0,1).

Công hai phương trình cho ta

\(2x^2-2xy+3y^2+7z^2=131\to7z^2\le131\to z^2\le16\to z^2\le9\to z^2=0,9.\) (vì \(z\vdots3.\))

Ta xét hai trường hợp

Trường hợp 1.  Nếu \(z^2=0\to\) \(x^2-3xy+3y^2=31,x^2+xy=100.\) Từ đây ta được

\(100\left(x^2-3xy+3y^2\right)=31\left(x^2+xy\right)\to69x^2-331xy+300y^2=0.\) Nếu \(y\ne0\) thì chia cả hai vế cho \(y^2\) ta đưa về phương trình bậc hai \(69t^2-331t+300=0\) với \(t=\frac{x}{y}.\) Tuy nhiên phương trình này không có nghiệm hữu tỉ, loại.  Vậy \(y=0\to x=0\)  (loại).

Trường hợp 2.  Nếu \(z^2=9\to\) \(x^2-3xy+3y^2=40,x^2+xy=28.\) Suy ra\(10\left(x^2+xy\right)=7\left(x^2-3xy+3y^2\right)\to3x^2-31xy-21y^2=0\). Tương tự trên ta dẫn tới \(y=0\to x=0\) (loại).

Tóm lại hệ vô nghiệm.

 

16 tháng 12 2016

a) Ta có bảng sau:

x - 11-15-5
y + 1-55-11
x206-4
y-64-20

Vậy cặp số ( x; y ) là ( 2; -6 ) ; ( 0 ; 4 ) ; ( 6 ; -2 ) ; ( -4 ; 0 )

26 tháng 8 2017

Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có

                        .

Cộng hai về với -2mV. Ta có

                         - 2mV +  =  - 2mV + 

hay                  .

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

                       

Do đó                m - V = V - m

Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).

Hướng dẫn giải:

Phép chứng minh sai ở chỗ: sau khi lấy căn bậc hai mỗi vế của đẳng thức . Ta được kết quả │m - V│ = │V - m│ chứ không thể có m - V = V - m.

12 tháng 2 2018

x=3;y=3

12 tháng 2 2018

2x-xy+3=9
x(2-y)=6
=) x=6  ; 2-y=1
x=1 ; 2-y = 6
x=2 ; 2-y = 3
x=3 ; 2-y= 2