K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Đặt \(\sqrt[4]{5}=a\)

9 tháng 11 2014

Đặt \(\sqrt[4]{5}=x\) thì \(x^4=5\). Ta có :

A = \(\frac{2}{\sqrt{4-3x+2x^2-x^3}}\)\(\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}\)\(\frac{2\left(x+1\right)}{\sqrt{-x^5+5x+4}}\)

Ta thấy \(-x^5+5x\) = \(x\left(5-x^4\right)\)\(0\)

nên A = \(\frac{2\left(x+1\right)}{\sqrt{4}}\)\(x+1\)=\(\sqrt[4]{5}+1\)

19 tháng 8 2016

de thoi

19 tháng 8 2016

de lam

NV
24 tháng 9 2019

\(D=\sqrt{5}-\sqrt{13-4\sqrt{\left(\sqrt{5}-2\right)^2}}=\sqrt{5}-\sqrt{13-4\left(\sqrt{5}-2\right)}\)

\(=\sqrt{5}-\sqrt{21-4\sqrt{5}}=\sqrt{5}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-2\sqrt{5}+1=1-\sqrt{5}\)

\(B=10\sqrt{5}+\left|1-\sqrt{5}\right|-\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=10\sqrt{5}+\sqrt{5}-1-\sqrt{5}+1=10\sqrt{5}\)

\(C=\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\sqrt{3}-1+2+\sqrt{3}+2\left(3-\sqrt{3}\right)=7\)