K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

ai giúp vs

28 tháng 12 2019

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

25 tháng 10 2020

a) \(3x\left(x-4\right)+15=3x^2\)

\(\Leftrightarrow3x^2-12x+15-3x^2=0\)

\(\Leftrightarrow-12x+15=0\)

\(\Leftrightarrow x=\frac{5}{4}\)

b) \(x^2+y^2-2x+8y+17=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+8y+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2=0\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)

14 tháng 11 2015

Cau hoi tuong tu nhe ban tick cho mk dc khog  co tick  thi mk thanks nhieu

14 tháng 11 2015

Câu hỏi tương tự nha bạn Hồng Luyến

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.

26 tháng 10 2019

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

26 tháng 10 2019

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)