tìm x,y,z biết ( x-1/2 )( y+1/3 )( z-2 ) = 0 và x+2 = y+3 = z+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)-2.\left(y-2\right)+3.\left(z-3\right)}{2-2.3+3.4}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}\)
\(=\frac{14-6}{8}=1\)
suy ra: \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow x=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
\(x-1\over2\)=\(y-2\over3\)=\(z-3\over4\)
=> \(x-1\over2\)=\(2.(y-2)\over2.3\)=\(3.(z-3)\over3.4\)
=> \(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)
\(Áp dụng tính chất của dãy tỉ số bằng nhau ta được:\)
\(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)=\(x-1-2y-4+3z-9\over2-6+12\)=\(1\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=5\)
\(\Rightarrow x-1=10;y-2=15;z-3=20\)
\(\Rightarrow x=11;y=17;z=23\)
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
Ta có :
\(\frac{x^3}{8}\)= \(\frac{y^3}{64}\)= \(\frac{z^3}{216}\) \(\Rightarrow\)\(\frac{x^3}{2^3}\)= \(\frac{y^3}{4^3}\)= \(\frac{z^3}{6^3}\)\(\Rightarrow\)\(\frac{x^2}{2^2}\)=\(\frac{y^2}{4^2}\)=\(\frac{z^2}{6^2}\)
và có : \(^{x^2+y^2+z^2=224}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{224}{56}=4\)
=> \(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow x\in4;-4\)
\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y\in8:-8\)
\(\frac{z^2}{36}=4\Rightarrow z^2=144\Rightarrow z\in12:-12\)
Vì \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)nên x,y,z cùng dấu
Vậy \(x,y,z\in\left(4;8;12\right);\left(-4;-8;-12\right)\)
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)
\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)
\(\Rightarrow x=\frac{1}{2}\) | \(y=-\frac{1}{3}\) | \(z=2\)
Khi \(x=\frac{1}{2}\) thì:
\(\frac{1}{2}+2=\frac{5}{2}\)
\(y=\frac{5}{2}-3=-\frac{1}{2}\)
\(z=\frac{5}{2}-4=\frac{-3}{2}\)
Khi \(y=\frac{-1}{3}\) thì:
\(\frac{-1}{3}+3=\frac{8}{3}\)
\(x=\frac{8}{3}-2=\frac{2}{3}\)
\(z=\frac{8}{3}-4=-\frac{4}{3}\)
Khi \(z=2\) thì:
\(2+4=6\)
\(x=6-2=4\)
\(y=6-3=3\)
Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\) ; \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\) ; \(\left(4;3;2\right)\)