Cho hình vuông ABCD. Một điểm E bất kì thuộc cạnh AB. Gọi F là giao điểm của DE và BC . Chứng minh rằng:
\(\frac{1}{DA^2}=\frac{1}{DE^2}+\frac{1}{DF^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua D kẻ đg thẳng ⊥ DE cắt BC tại I
+ ΔADE = ΔCDI ( g.c.g )
=> DE = DI
+ ΔDIF vuông tại D, đg cao DC
\(\Rightarrow\frac{1}{CD^2}=\frac{1}{DI^2}+\frac{1}{DF^2}\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{DE^2}+\frac{1}{DF^2}\)
1)
Kẻ tia Dx vuông góc với DF, Dx cắt BC tại M
tam giác DFM vuông tại D có DC là đường cao
dựa vào hệ thức lượng tam giác vuông, ta có:
\(\frac{1}{DF^2}+\frac{1}{DM^2}=\frac{1}{DC^2}\)
Mà DM = ED (chứng minh tam giác AED = tam giác CMD)
DC = AD (hình vuông ABCD)
=> đpcm
Tự vẽ hình
vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P
Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)
----> 1/CD2 =1/DP2 +1/DF2
mà CD = DA(cạnh hình vuông )
-----> ^D1 =^D2 (2 góc tương ứng )
---__> tam giác DAE= tam giác DCP
------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2