cho a>=2
tìm GTNN M=a+1/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos\left(2-ab\right)-cos\left(a+b\right)=a+b+ab-2\)
\(\Leftrightarrow cos\left(2-ab\right)+2-ab=cos\left(a+b\right)+a+b\)
Xét hàm \(f\left(x\right)=cosx+x\)
\(f'\left(x\right)=-sinx+1\ge0;\forall x\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow2-ab=a+b\)
\(\Rightarrow2-a=b\left(a+1\right)\Rightarrow b=\dfrac{2-a}{a+1}=\dfrac{3}{a+1}-1\)
\(\Rightarrow P=a+\dfrac{6}{a+1}-2=a+1+\dfrac{6}{a+1}-3\ge2\sqrt{\dfrac{6\left(a+1\right)}{a+1}}-3=2\sqrt{6}-3\)
cho hệ pt 3x-y=2m-1 và x+2y=3m+2
tìm m để hpt có nghiệm ( x;y) thỏa mãn \(^{x^2}\)+\(^{y^2}\)đạt GTNN
Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)
\(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)
a: Ta có: \(\sqrt{2x-1}=4\)
\(\Leftrightarrow2x-1=16\)
\(\Leftrightarrow2x=17\)
hay \(x=\dfrac{17}{2}\)
b: Ta có: \(\sqrt{4x+4}-\sqrt{9x+9}=-6\)
\(\Leftrightarrow-\sqrt{x+1}=-6\)
\(\Leftrightarrow x+1=36\)
hay x=35
\(x^3+3x^2+x+a=x^2\left(x-2\right)+5x\left(x-2\right)+11\left(x-2\right)+22+a=\left(x-2\right)\left(x^2+5x+11\right)+22+a⋮\left(x-2\right)\)
\(\Rightarrow22+a=0\Rightarrow a=-22\)
\(M=a+\dfrac{1}{a}=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\)
BBĐT AM-GM
\(=>\dfrac{a}{4}+\dfrac{1}{a}\ge2\sqrt{\dfrac{1}{4}}=1\)
\(=>M=\dfrac{3a}{4}+\dfrac{a}{4}+\dfrac{1}{a}\ge1+\dfrac{3.2}{4}=\dfrac{5}{2}\)
dấu"=" xảy ra<=>\(a=2\)
cánh 2: \(M=a+\dfrac{1}{a}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\) dấu"=" xảy ra tương tự
nhầm không có cách 2 đâu nhé