Tìm các số tự nhiên thỏa mãn
x2 + x = 32018y +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(x^2+x⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)
\(\Rightarrow x^2+x+1⋮̸9\)
\(\Rightarrow dpcm\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
Ta thấy \(x\left(x+1\right)\) là số chẵn
\(\left(1\right)\Rightarrow3^y-1\) là số chẵn
\(\Rightarrow y\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài
Đính chính
a) Giả sử \(x^2+x\) \(⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x^2+x+1\) \(⋮̸9\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn
\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
ta có \(x^2+x-1=3^{2018y}\)
Với \(y=0\Rightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=1\)thỏa mãn
Với \(y\ge1\)
thì \(x^2+x-1\text{ chia hết cho 3}\)
hay \(\left(x-1\right)\left(x+1\right)+x\)chia hết cho 3, điều này là vô lí vì x-1,x,x+1là ba số tự nhiên liên tiếp
Vậy chỉ có cặp \(\left(x,y\right)=\left(1,0\right)\text{ thỏa mãn}\)