Tìm các số x , y , z biết :
x : y : z = 3 : 4 : 5 và 2x2 + 2y2 - 3z2 = -100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn:
2x
2 + 2y
2 − 3z
2= -100 là như thế nào bạn nhỉ?
Bạn viết lại đề để mọi người hiểu hơn nhé.
\(\dfrac{x}{4}=\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)
AD t/c của dãy tỉ số bằng nhâu ta có
\(\dfrac{2x^2}{32}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{32+32-75}=\dfrac{-100}{-11}=\dfrac{100}{11}\)
\(=>\left[{}\begin{matrix}x=\dfrac{400}{11}\\y=\dfrac{400}{11}\\z=\dfrac{500}{11}\end{matrix}\right.\)
Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)
Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Chứng minh tương tự:
\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)
Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Bạn tham khảo nhé
https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737
Vì x, y, z tỉ lệ với các số a, b, c nên suy ra x = ka, y = kb, z = kc
Thay x = ka, y = kb, z = kc vào ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) ta được
[ ( k a ) 2 + 2 ( k b ) 2 + 3 ( k c ) 2 ] ( a 2 + 2 b 2 + 3 c 2 ) = ( k 2 a 2 + 2 k 2 b 2 + 3 k 2 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) 2 = [ k ( a 2 + 2 b 2 + 3 c 2 ) ] 2 = ( k a 2 + 2 k b 2 + 3 k c 2 ) 2 = ( k a . a + 2 k b . b + 3 k c . c ) 2 = ( x a + 2 y b + 3 z c ) 2
do x = ka,y = kb, z = kc
Vậy
( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = ( a x + 2 b y + 3 c z ) 2
Đáp án cần chọn là: D
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
⇒\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)
Ta có: x:y:z =4:5:6
⇒\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)
⇒\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)
⇒\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)
\(\dfrac{x}{4}=9\Rightarrow x=36\)
\(\dfrac{y}{5}=9\Rightarrow y=45\)
\(\dfrac{z}{6}=9\Rightarrow z=54\)
Ta có x : y : z = 3 : 4 : 5
<=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó 2x2 + 2y2 - 3z2 = -100
<=> 2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100
<=> 18k2 + 32k2 - 75k2 = -100
<=> -25k2 = -100
<=> k2 = 4
<=> k = \(\pm2\)
Khi k = 2 => x = 6 ; y = 8 ; z = 10
Khi k = -2 => x = -6 ; y = -8 ; z = - 10
Vậy các cặp (x;y;z) thỏa mãn là (6;8;10);(-6;-8;-10)
đây nhé