K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

ta co 

AH vuong goc BD ( gt)

CK vuong goc BD ( gt)

-> AH//CK

xet tu giac AHCK co AH//CK (Cmt)--> AHCK la hinh thang

a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có 

AD=CB

\(\widehat{D}=\widehat{B}\)

Do đó: ΔADH=ΔCBK

Suy ra: DH=BK

Ta có: DH+CH=DC

KB+AK=AB

mà DH=BK

và DC=AB

nên CH=AK

b: Xét tứ giác AHCK có 

AK//CH

AK=CH

Do đó: AHCK là hình bình hành

26 tháng 8 2021

Xét tg DKC và tg BHA có H=K =90 đỘ

                                         DC=AB( hbh ABCD)

                                         ABH=CBK( hbh ABCD, AB//DC)

Suy ra tg DKC=tg BHA( ch-gn)

=> CK=AH( 2 cạnh t/ư)

Ta có : AH vg góc DB

           CK vg góc DB

=> CK//AH

Xét tg AKCH có CK//AH(cmt)

                          CK=AH( cmt)

=> AKCH là hbh( dấu hiệu 3)

 

 

9 tháng 12 2018

Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)

a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có 

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔADH=ΔCBK

Suy ra: AH=CK

Xét tứ giác AHCK có 

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

góc ADH=góc CBK

=>ΔAHD=ΔCKB

=>AH=CK

mà AH//CK

nên AHCK là hình bình hành

b: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của AC

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>I là trung điểm của BD

=>IB=ID