K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2014

a=(2+2^2)+(2^3+2^4)+....+(2^59+2^60)

=(2+2^2)+2^2(2+2^2)+...+2^58(2+2^2)

=6+(2^2.6)+....+(2^58.6)

=6.(1+2^2+...2^58) chia het cho 6

6 tháng 12 2016

1. A = 2 + 22 + 23 + 24 + ... + 260

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 258 . 7

A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7

Vậy ...

2.Ta có : \(n+4⋮n+1\)

Mà : \(n+1⋮n+1\)

\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)

\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27

B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )

B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )

B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3

B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3

Vậy ...

6 tháng 12 2016

ban nay hoc gioi qua

 

25 tháng 11 2015

A=2+2^2+2^3+....+2^2004

A=(2+2^2)+(2^3+2^4)+.....+(2^2003+2^2004)

A=1.(2+2^2)+2^2(2+2^2)+...+2^2002(2+2^2)

A=1.6+2^2.6+...+2^2003.6

A=6(1+2^2+....+2^2003) chia hết ch0 6

25 tháng 11 2015

b/

B=2+2^2+2^3+....+2^2004

B=(2+2^2+2^3+2^4)+....+(2^2001+2^2002+2^2003+2^2004)

B=1(2+2^2+2^3+2^4)+...+2^2000(2+2^2+2^3+2^4)

B=1.30+...+2^2000.30

B=30(1+...+2^2000) chia hết cho 30

29 tháng 4 2017

A=2+2^2+2^3+...+2^60

A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

A=6+2^2.(2+2^2)+...+2^58.(2+2^2)

A=6+2^2.6+...+2^58.6

A=6.(1+2^2+...+26^58)

Vì 6\(⋮\)6

=>6.(1+2^2+...+2^58) \(⋮\)6

=>A\(⋮\)6

Vậy A chia hết cho 6

6 tháng 1 2016

câu hỏi tương tự nhà bạn

6 tháng 1 2016

ta có: 2+2^2+............+2^60

         =(2+2^2)+(2^3+2^4)+............+(2^59+2^60)

         =1(2+2^2)+2^3(2+2^2)+........+2^59(2+2^2)

=1.6+2^3.6+..........+2^59.6=1.2.3 + 2^3.2.3+....+2^59.2.3=(1.2+2^3.2+......+2^59.2).3 chia hết cho 3

#### nha

21 tháng 7 2015

1) Số cần tìm là: 3

2)  2354 X 9 = 21186

3) ( "b" ở đâu ra vậy bạn ? )

4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
=> S chia hết cho 10.