Cho A(1;3), B(-7;1); C(2;-1). Tính chu vi và diện tích tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a1+a2+a3+......+a2015=0
\(\Rightarrow\)(a1+a2)+(a3+a4)+.....+(a2013+a2014)+a2015=0
Theo bài vì a1+a2=a2+a3=....a2015+a1=1 nên:
\(\Rightarrow\)1+1+1+.......+1+a2015=0(có 1007 chữ số 1)
\(\Rightarrow\)1007+a2015=0
\(\Rightarrow\)a2015=-1007
Mà: a2015+a1=1
\(\Rightarrow\)a1=1-(-1007)=1008
Học tốt!
Củ lạc giòn tan??? Định bán hàng à , BÁO CÁO SAI PHẠM luôn!!!
(a1-1)/9=(a2-2)/8=(a3-3)/7=...=(a9-9)/1
ap dung day ti so bang nhau:
=>(a1-1)/9=(a2-2)/8=(a3-3)/7=...=(a9-9)/1
=(a1-1+a2-2+a3-3+...+a9-9)/(1+2+3+...+8+9)
=[(a1+a2+a3+...+a9)-(1+2+3+...+9)]/(1+2+3+...+8+9)
=(90-45)/(45)=1
=>a1=a2=a3=a4=a5=a6=a7=a8=a9=10
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
tick để ủng hộ mình nha
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì **** cho mình nhé)
\
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
tick nha
\(AB=\sqrt{\left(1+8\right)^2+\left(3-1\right)^2}=\sqrt{9^2+2^2}=\sqrt{85}\)
\(AC=\sqrt{\left(1-2\right)^2+\left(3+1\right)^2}=\sqrt{17}\)
\(BC=\sqrt{\left(-7-2\right)^2+\left(1+1\right)^2}=\sqrt{85}\)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=2\sqrt{85}+\sqrt{17}\left(đvđd\right)\)
Nửa chu vi tam giác ABC là:
\(P_{ABC}=\dfrac{C_{ABC}}{2}=\dfrac{2\sqrt{85}+\sqrt{17}}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{85}}{2}\right)^2\cdot\left(\dfrac{2\sqrt{85}+\sqrt{17}}{2}-\dfrac{2\sqrt{17}}{2}\right)}\)
\(=\sqrt{\dfrac{2\sqrt{85}+\sqrt{17}}{2}\cdot\dfrac{2\sqrt{85}-\sqrt{17}}{2}\cdot\dfrac{17}{4}}\)
\(=\sqrt{\dfrac{323\cdot17}{16}}=\dfrac{17\sqrt{19}}{4}\left(đvdt\right)\)