K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Công thức tổng quát:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Do đó:

\(A=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x-4}+\frac{1}{\left(x-1\right)\left(x+10\right)}\)

Bạn tự làm tiếp nhé.

27 tháng 12 2017

ĐKXĐ : x khác -1 và 1

A = [x^3+1-(x^2-1).(x+1)/(x-1).(x+1)] : [x.(x-1)+x/x-1]

 = [-x^2+x/(x-1).(x+1)] : x^2/x-1

 = -x.(x-1)/(x-1).(x+1) . (x-1)/x^2

 = -(x-1)/x.(x+1)

k mk nha

27 tháng 12 2017

sai rồi ông nội

15 tháng 7 2020

=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Lời giải:

ĐKXĐ: \(x\geq 0; x\neq 1\)

Ta có:

\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)

\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}-1}\right):\frac{2}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)

\(=\frac{-\sqrt{x}}{\sqrt{x}-1}\)

Để p = -2 \(\Rightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)

\(\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)

\(\Rightarrow-\sqrt{x}=-2\left(\sqrt{x}-1\right)\)

\(\Rightarrow-\sqrt{x}=-2\sqrt{x}+2\)

\(\Rightarrow-\sqrt{x}+2\sqrt{x}=2\)

\(\Rightarrow\sqrt{x}=2\)

\(\Rightarrow x=4\)

2 tháng 10 2017

ĐKXĐ:\(x\ge0,x\ne4\)\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}\)=\(\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\frac{3\sqrt{x}}{\sqrt{x}+2}\)

2 tháng 10 2017

ko biết