Tìm các số nguyên x , sao cho :
\(\dfrac{2}{x}=\dfrac{x}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`C = (x+4)/(x+1) = (x+1+3)/(x+1) = 1+3/(x+1)`
Để `C in ZZ`
`=> x+1 in Ư(3)=(+-1,+-3)`
`@ x+1 =1 => x =0`
`@ x+1=-1 => x = -2`
`@x+1 =3 => x = 2`
`@x+1 =-3 =>x=-4`
`B = (x-4)/(x+2) = (x+2-6)/(x+2) = 1-6/(x+2)`
Để `B in ZZ`
`=> x+2 in Ư(6) = {+-1,+-2,+-3,+-6)`
`@ x+2 =1 => x = -1`
`@x+2 =-1 => x=-3`
`@ x+2 =2 => x=0`
`@ x+2 =-2 => x=-4`
`@x+2 =3 => x = 1`
`@ x +2 =-3 => x = -5`
`@ x+2 =6 => x=4`
`@x+2 =-6 => x= -8`
a: =>19/23>19/x>19/29
=>\(x\in\left\{24;25;26;27;28\right\}\)
b: =>88/132<88/x<88/128
=>132>x>128
=>\(x\in\left\{131;130;129\right\}\)
c: =>\(\left\{{}\begin{matrix}\dfrac{4}{x}-\dfrac{x}{8}< 0\\\dfrac{x}{8}-\dfrac{5}{x}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{32-x^2}{8x}< 0\\\dfrac{x^2-40}{8x}< 0\end{matrix}\right.\)
=>32<x^2<40
=>x=6
\(\Rightarrow3xy=12-11y\Leftrightarrow3xy+11y=12\)
\(\Leftrightarrow y\left(3x+11\right)=12\Rightarrow y;3x+11\inƯ\left(12\right)=12\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm\right\}\)
-> bạn tự lập bảng
\(a,=\dfrac{\sqrt{x}-8+5}{\sqrt{x}-8}=1+\dfrac{5}{\sqrt{x}-8}\in Z\\ \Leftrightarrow\sqrt{x}-8\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;7;9;13\right\}\\ \Leftrightarrow x\in\left\{9;49;81;169\right\}\left(tm\right)\\ b,=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(7\right)=\left\{-1;1;7\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;9\right\}\\ \Leftrightarrow x\in\left\{1;9;81\right\}\\ c,=\dfrac{2\left(\sqrt{x}+3\right)+2}{\sqrt{x}+3}=2+\dfrac{2}{\sqrt{x}+3}\in Z\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\varnothing\left(\sqrt{x}+3>3\right)\\ \Leftrightarrow x\in\varnothing\)
\(\text{Ta có:}\dfrac{x}{8}=\dfrac{2}{x}\)
\(\Rightarrow\dfrac{x}{8}.8x=\dfrac{2}{x}.8x\)
\(\Rightarrow x^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x^2=\left(-4\right)^2\\x^2=4^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4^{ }\\x^{ }=4^{ }\end{matrix}\right.\)
\(\text{Vậy }x\in\left\{-4;4\right\}\)