Cho \(0\le x\le2\), Tìm GTLN của A=(x+y)(2-x)(4-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)
gtln của A = 9
Với \(x=y=z=1\)
easy không ? =)
Có 0 <= x,y,z => xyz >= 0
Có x,y,z <=2 => (2-x)(2-y)(2-z)>=0 => 8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0
Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0
=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2
=> 8 -4.3 +3^2 >=A (vì x+y+z=3)
=> 5>= A
Dấu "=" xảy ra khi x=2,y=1,z=0
Vậy Max A =5 khi x=2,y=1,z=0
\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)
\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)
\(\Rightarrow xy+yz+zx\ge2\)
\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)
\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị