Cho M = n+4 / n -2
a) Tìm n để M là số nguyên
b) Tìm n để M đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)
a) để A là số nguyên thì n-2 phải là ước của 3
=> n-2={-3; -1; 1; 3}
=> n={-1; 1; 3; 5}
b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3
Khi đó GTLN của A là: 1+3=4
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
a) Để A là số nguyên thì \(n+2⋮n+1\)
\(\Leftrightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
nên \(1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{0;-2\right\}\)
b) Gọi d\(\in\)ƯC(n+2;n+1)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)
hay A là phân số tối giản(Đpcm)
a) Để M là số nguyên.
=>n+4 chia hết cho n-2
=>n-2+6 chia hết cho n-2
=>6 chia hết cho n-2
=>n-2=Ư(6)=(-1,-2,-3,-6,1,2,3,6)
=>n=(1,0,-1,-4,3,4,5,8)
Vậy n=1,0,-1,-4,3,4,5,8 để M là số nguyên.