K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

\(\hept{\begin{cases}5a+2b=65\left(1\right)\\2a+11b=26\left(2\right)\end{cases}\hept{\begin{cases}20a+8b=260\\20a+110b=260\end{cases}}}\)

dễ thấy \(102b=0\)

\(b=0\) thế vào (1)

\(5a+0=65\)

\(a=13\)

\(\hept{\begin{cases}b=0\\a=13\end{cases}}\)

10 tháng 1 2024

loading...

28 tháng 3 2023

a)

`a>b`

`<=>2a>2b`

`<=>2a+4>2b+4`

b)

`a>b`

`<=>-2a<-2b`

`<=>7-2a<7-2b`

c)

`a>b`

`<=>5a>5b`

`<=>5a+3>5b+3`

mà `5b-3<5b+3`

`=>5a+3>5b-3`

d)

`a>b`

`<=>2a>2b`

`<=>2a+5>2b+5`

mà `2b+5>2b-1`

`=>2a+b>2b-1`

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)

13 tháng 6 2021

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

13 tháng 6 2021

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

17 tháng 6 2017

\(a=10\)

\(b=15\)

chúc bạn học giỏi

28 tháng 6 2017

hihi cảm ơn

31 tháng 7 2021

1) Ta có: \(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{5}\)

\(\dfrac{a+2b-c}{2+6-5}=\dfrac{15}{3}=5\)

\(\dfrac{a}{2}=5\) ⇒a=10

\(\dfrac{b}{3}=5\) ⇒b=15

\(\dfrac{c}{5}=5\) ⇒c=25

31 tháng 7 2021

3) Chu vi hình vuông là

7x4=28(cm)

Nửa chu vi HCN là

28:2=14(cm)

Ta có: \(\dfrac{a}{5}=\dfrac{b}{2}\)

\(\dfrac{a+b}{5+2}=\dfrac{14}{7}=2\)

\(\dfrac{a}{5}=2\) ⇒a=10

\(\dfrac{b}{2}=2\) ⇒b=4

Diện tích HCN là

10x4=40(cm2)

11 tháng 2 2019

                          Giải

- Do 3a + 11b chia hết cho 17 nên 4.(3a + 11b) chia hết cho 17 hay 12a + 44b chia hết cho 17

-Gọi A = 12a + 44b

       B = 5a + 7b

- Muốn chứng minh B chia hết cho 17 thì đi xét tổng A + B , nếu A + B chia hết cho 17 thì B chia hết cho 17 (A đã chia hết cho 17 - theo chứng minh trên)

+Xét tổng A + B = 12a + 44b + 5a + 7b

                        = 17a + 51b

                        = 17.(a + 3b)  chia hết cho 17

Vậy B chia hết cho 17 hay 5a + 7b chia hết cho 17.