CMR không có các số dương a,b,c nào thỏa cả 3 bất đẳng thức:
1) a + 1/b <1
2) b + 1/c <2
3) c + 1/a <3
Chứng minh bằng phương pháp phản chứng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Sửa đề: Chứng minh rằng không có các số a, b, c nào thỏa mãn cả 3 bất đẳng thức
|b - c| > |a|(*); |c - a| > |b|(**); |a - b| > |c|(***)
Ta dễ thấy a, b, c phải khác nhau từng đôi 1
Ta thấy rằng vai trò của a, b, c trong bài này là như nhau nên ta chỉ cần giải 4 trường hợp là
\(\left(a>0,b>0,c>0\right);\left(a< 0,b< 0,c< 0\right);\left(a>0,b>0,c< 0\right);\left(a< 0,b< 0,c>0\right)\)
Không mất tính tổng quát ta giả sử: |a| > |b| > |c|
Với \(a>0,b>0,c>0\)thì |b - c| > |a| là sai (1)
Với \(a< 0,b< 0,c< 0\) thì |b - c| > |a| là sai (2)
Với \(a>0,b>0,c< 0\)thì ta đặt \(c=-z\left(z>0\right)\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}b+z>a\\a-b>z\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}z>a-b\\z< a-b\end{cases}}\)(sai) (3)
Với \(a< 0;b< 0;c>0\)thì ta đặt \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}y+c>x\\x-y>c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x-y\\c< x-y\end{cases}}\)(sai) (4)
Từ (1), (2), (3), (4) ta suy ra điều phải chứng minh
mk góp thêm 1 cách nữa
Giả sử tồn tại 3 số a, b, c thỏa mãn cả 3 BĐT trên. Ta có:
\(\left|b-c\right|>\left|a\right|\)\(\Rightarrow\)\(\left(b-c\right)^2>a^2\)\(\Leftrightarrow\)\(b^2-2bc+c^2-a^2>0\)
\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(a-b+c\right)>0\)(1)
Tương tự \(\left|c-a\right|>\left|b\right|\)\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(-a+b+c\right)>0\) (2)
và \(\left|a-b\right|>\left|c\right|\)\(\Leftrightarrow\)\(-\left(a-b+c\right)\left(-a+b+c\right)>0\) (3)
Nhân (1), (2) và (3) theo vế ta được \(-\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2>0\) (vô lý)
Vậy ko tồn tại 3 số a, b, c thỏa mãn 3 BĐT đã cho.
Lời giải:
Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên
$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$
$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$
$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)
Do đó điều giả sử là sai.
Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)
Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)
Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)