chứng minh rằng : (x+y)^2= (x-y)^2 + 4xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(VT=\left(x-y\right)^2-\left(x+y\right)^2\)
\(=x^2-2xy+y^2-x^2-2xy-y^2\)
\(=-4xy\)
Vậy : \(\left(x-y\right)^2-\left(x+y\right)^2=-4xy\) ( đpcm )
Ta có: (x-y)2 - (x+y)2 = x2-2xy+y2-(x2+2xy+y2)
= x2-2xy+y2-x2-2xy-y2
= -4xy
Vậy (x-y)2 - (x+y)2 = -4xy
vế trái = (x+y)2-(x-y)2=x2+2xy+y2-(x2-2xy+y2)=x2+2xy+y2-x2+2xy-y2=4xy = vế phải
=> Điều phải chứng minh
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
Đặt \(f\left(x\right)=x^2y^4-4xy^3+2x^2y^2+4y^2+4xy+x^2\)
\(f\left(x\right)=\left(y^4+2y^2+1\right)x^2-4\left(y^3-y\right)x+4y^2\)
\(a=y^4+2y^2+1>0;\forall y\)
\(\Delta'=4\left(y^3-y\right)^2-4y^2\left(y^4+2y^2+1\right)\)
\(=4y^6+4y^2-8y^4-4y^6-8y^4-4y^2=-16y^4\le0;\forall y\)
\(\Rightarrow f\left(x\right)\ge0\) ; \(\forall x;y\)
a) Ta có:
VT = (x - y)² + 4xy
= x² - 2xy + y² + 4xy
= x² + 2xy + y²
= (x + y)²
= VP
b) Ta có:
(x + y)² = (x - y)² + 4xy
= 5² + 4.3
= 25 + 12
= 37
Bài này áp dụng lý thuyết đồ thị parabol lớp 10 thì khá đơn giản, chỉ việc tính delta và chứng minh nó \(\le0\) là xong, lớp 9 cứ biến đổi tương đương, đỡ phải tìm BĐT đau đầu:
Dấu "=" có xảy ra tại \(x=y=0\) cho nên BPT đúng phải là:
\(x^2y^4+2y^2\left(x^2+2\right)+x^2+4xy\ge4xy^3\)
\(\Leftrightarrow\left(y^4+2y^2+1\right)x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x^2-\frac{4y\left(y^2-1\right)}{\left(y^2+1\right)^2}x+\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\right]+4y^2-\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x-\frac{2y\left(y^2-1\right)}{y^2+1}\right]^2+\frac{16y^4}{\left(y^2+1\right)^2}\ge0\) (luôn đúng)
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
Ta có: \(\left(x-y\right)^2+4xy=x^2-2xy+y^2+4xy=x^2+2xy+y^2=\left(x+y\right)^2\)