Tìm ước chung lớn nhất của a và a+3 biết( a thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số là a,b \(\left(9< a,b< 100;a,b\in N\right)\)
\(ƯCLN\left(a,b\right)=12\Rightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ \Rightarrow144kq=5040\\ \Rightarrow kq=35\)
Mà \(\left(k,q\right)=1\Rightarrow\left(k;q\right)\in\left\{\left(1;35\right);\left(5;7\right);\left(7;5\right);\left(35;1\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(12;420\right);\left(420;12\right);\left(84;60\right);\left(60;84\right)\right\}\)
Vậy 2 số cần tìm là 60 và 84
UCLN của chúng là 12 mà 2 số đó thuộc N nên gọi 2 số đó là a,b
a=12x ( Vì a chia hết 12)
b=12y( Như trên )
12x X 12y= 5040
144 ( xy) = 5040
xy = 35 với (x,y) =1 ( Ước chung lớn nhất của x và y là 1 )
Ta có bảng giá trị :
x= 1 thì y =35 và a = 12 và b= 420
x=5 thì y=7 và a = 60 , b=84
Suy ra (a,b) = (12,420) , (60,84) và hoán vị
Tivk mình bạn nhé
Vì b chia hết cho a nên a thuộc ước của b
Vậy ước chung lớn nhất của ( a,b ) là a
Lời giải:
Gọi $d=ƯCLN(a,a+3)$
$\Rightarrow a\vdots d; a+3\vdots d$
$\Rightarrow (a+3)-a\vdots d$
$\Rightarrow 3\vdots d\Rightarrow d=1$ hoặc $d=3$.
Nếu $d=3$ thì $a\vdots 3$.
Nếu $d=1$ thì $a\not\vdots 3$
Vậy $a\vdots 3$ thì $ƯCLN(a,a+3)=3$. Vơ $a\not\vdots 3$ thì $ƯCLN(a,a+3)=1$