So sánh
\(\left(\frac{1}{243}\right)^9\) và \(\left(\frac{1}{83}\right)^{13}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)
b) 199010 + 19909
= 19909 ( 1990 + 1 )
= 19909 . 1991 < 199110 = 19919 . 1991
Vậy 199010 + 19909 < 199110
\(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^4}\right)^9=\frac{1}{3^{4.9}}=\frac{1}{3^{36}}\)
\(\left(\frac{1}{83}\right)^{13}<\left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{4.13}}=\frac{1}{3^{42}}\)
\(\frac{1}{3^{36}}>\frac{1}{3^{42}}\Rightarrow\left(\frac{1}{81}\right)^{13}<\left(\frac{1}{243}\right)^9\)
=> \(\left(\frac{1}{83}\right)^{13}<\left(\frac{1}{243}\right)^9\)
\(\left(-\frac{1}{27}\right)^{53}=\left[\left(-\frac{1}{3}\right)^3\right]^{53}=\left(-\frac{1}{3}\right)^{159}\)
\(\left(-\frac{1}{243}\right)^{23}=\left[\left(-\frac{1}{3}\right)^5\right]^{23}=\left(-\frac{1}{3}\right)^{115}\)
Vì\(\left(-\frac{1}{3}\right)^{159}< \left(-\frac{1}{3}\right)^{115}\)nên: \(\left(-\frac{1}{27}\right)^{53}< \left(-\frac{1}{243}\right)^{23}\)
Nhung ơi tớ câu c tớ làm giống cái cậu Triều nhưng ko có dấu trừ
ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13
ta co( \(\frac{1}{243}\))9=(\(\frac{1}{3}\))45=(\(\frac{1}{81}\))11,25<(\(\frac{1}{83}\))13