Tính giá trị biểu thức: M=2/3+2/9+2/27+2/81+...+2/729
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) \(\times\) \(\dfrac{1}{4}\) = 6 : 1 : 2
\(x\) \(\times\) \(\dfrac{1}{4}\) = 6:2
\(x\) \(\times\) \(\dfrac{1}{4}\) = 3
\(x\) = 3 : \(\dfrac{1}{4}\)
\(x\) = 12
\(=\dfrac{3\cdot7\cdot3^4\cdot3^6+3^6\cdot3^4\cdot3^3}{3^2\cdot3^4\cdot2\cdot3^{12}\cdot13+3^2\cdot2\cdot3^3\cdot2\cdot3^4\cdot2\cdot3^2+723\cdot729}\)
\(=\dfrac{3^{11}\cdot7+3^{13}}{3^{18}\cdot26+3^{11}\cdot8+3^7\cdot241}\)
\(=\dfrac{3^{11}\left(7+9\right)}{3^7\left(3^{11}\cdot26+3^4\cdot8+241\right)}=\dfrac{3^7\cdot16}{17\cdot101\cdot2683}\)
Ta có :C= 2181-729+243.81-27
=2052+19683-27
C=21108
D=\(3^2.9^2.243+18.243.324.243\)
=9.81.243+18.243.324.243
=177147+344373768
=344550915
Ta có : C:D=21108:344550915=0,00006
Đặt \(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
=>\(3N=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
=>\(3N-N=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^6}\)
=>\(2N=1-\frac{1}{3^6}\)
=>\(2N=1-\frac{1}{729}=\frac{729}{729}\)
Lại có:\(M=\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+...+\frac{2}{729}\)
=>\(M=2.\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{729}\right)\)
=>\(M=2.\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\right)\)
=>\(M=2.N\)
=>\(M=\frac{728}{729}\)