a) |x|+x=0
b) x+|x|=2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt |x|=a
Pt trở thành \(3a^2-14a-5=0\)
=>(a-5)(3a+1)=0
=>a=5(nhận) hoặc a=-1/3(loại)
=>x=-5 hoặc x=5
c: \(\left|x+2\right|-2x+1=x^2+2x+3\)
\(\Leftrightarrow\left|x+2\right|=x^2+4x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+4x+2>=0\\\left(x^2+4x+2-x-2\right)\left(x^2+4x+2+x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+5x+4\right)=0\)
hay \(x\in\left\{0;-3;-1;-4\right\}\)
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
a) \(\left(x-3\right)^2+2x-6=0\)
\(\Leftrightarrow x^2-6x+9+2x-6=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\) (ĐKXĐ: \(x\ne\pm3\))
\(\Leftrightarrow\dfrac{x+3}{x-3}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x+3}\)
\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2+6x+9-48=x^2-6x+9\)
\(\Leftrightarrow x^2-x^2+6x+6x+9-9-48=0\)
\(\Leftrightarrow12x-48=0\)
\(\Leftrightarrow12x=48\)
\(\Leftrightarrow x=\dfrac{48}{12}\)
\(\Leftrightarrow x=4\left(tm\right)\)
a: (x-3)^2+2x-6=0
=>(x-3)^2+2(x-3)=0
=>(x-3)(x-3+2)=0
=>(x-3)(x-1)=0
=>x=3 hoặc x=1
b:
ĐKXĐ: x<>3; x<>-3
\(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\)
=>\(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48}{\left(x-3\right)\cdot\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)^2}\)
=>(x+3)^2-48=(x-3)^2
=>x^2+6x+9-48=x^2-6x+9
=>6x-39=-6x+9
=>12x=48
=>x=4(nhận)
a: TH1: x<-3
=>-2x-(-x-3)-1=0
=>-2x-1+x+3=0
=>-x+2=0
=>x=2(loại)
TH2: -3<=x<0
=>-2x-x-3-1=0
=>-3x-4=0
=>x=-4/3(nhận)
TH3: x>=0
=>2x-x-3-1=0
=>x-4=0
=>x=4
b: TH1: x<-1
=>-x-1-2(1-x)=x
=>-x-1-2+2x=x
=>x-3=x(loại)
TH2: -1<=x<1
=>x+1-2(1-x)=x
=>1-2(1-x)=0
=>2(1-x)=1
=>1-x=1/2
=>x=1/2(nhận)
TH3: x>=1
=>x+1-2x+2=x
=>-x+3-x=0
=>3-2x=0
=>x=3/2(nhận)
c: TH1: x<-3/2
=>-2x-3+x+x-1=0
=>-4=0(loại)
TH2: -3/2<=x<0
=>2x+3+x+x-1=0
=>4x+2=0
=>x=-1/2(nhận)
TH3: x>=0
=>2x+3-x+x-1=0
=>2x+2=0
=>x=-1(loại)
ình nghĩ bạn cần ghi rõ điều kiện ra hơn í nhưng vậy cũng đc rồi cảm ơn bn
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a) |x| + x = 0
<=> |x| = -x
<=> x∈∈(−∞−∞;0]
b) x + |x| = 2x
<=> |x| = x
<=> x∈∈[0;+∞∞)