hãy chứng minh 3x^2 -x+2 > 0 toán 8
giúp mình với
cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+8x+17=(x^2+2.4x+16)+1=(x+4)^2+1\geq1>0\)
\(\Rightarrow x^2+8x+17 > 0 \) với mọi x
\(\Rightarrow đpcm\)
\(x^2+8x+17=x^2+8x+16+1=\left(x+4\right)^2+1\ge1>0\forall x\)
Hay: \(x^2+8x+17>0\forall x\)
=.= hok tốt!!
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
Cậu hãy đặt y = x2 + 3x + 2
-> y(y+1)-2=0
-> y=1 -> x= ...
hoặc y=-2 -> x=...
Bạn tự giải tiếp nha
Mình làm đc khúc đó ròi khúc sau thì thế vào tính nhưng không ra nghiệm!!!! Bó tay luôn
Có: x^2-4x+10=x^2-2*x*2+2^2+6=(x-2)^2+6
(x-2)^2>=0 với mọi x
=> (x-2)^2+6>0 với mọi x
=> x^2-4x+10>0 với mọi x
Ta có : A = \(\frac{-5x}{x^2-3x+\frac{9}{4}+\frac{31}{4}}\)= \(\frac{-5x}{\left(x-\frac{3}{2}\right)^2+\frac{31}{4}}\)Vì \(\left(x-\frac{3}{2}\right)^2\)>0 hoặc =0 , khi công thêm \(\frac{31}{4}\)thì Mẫu số luôn lớ hơn hoặc bằng 0. Mà -5x luôn bé hơn hoặc bằng 0
Vì vậy biểu thức A luôn âm
\(x^3+2x^2+3x=0\)\(\Leftrightarrow x.\frac{x^3+2x^2+3x}{x}=0\)
\(\Leftrightarrow x\left(x^2+2x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+2x+3=0\end{cases}}\)
Ta sẽ c/m \(x^2+2x+3=0\) vô nghiệm.Thật vậy:
\(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)
Từ đó suy ra \(x^2+2x+3=0\) vô nghiệm.
Vậy : x = 0
\(\left(x+2\right)\left(2x-1\right)+1=4x^2\)
\(2x^2-x+4x-2+1=4x^2\)
\(\Rightarrow2x^2-3x+1=0\)
\(2x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
ý còn lại tham khảo bài tth
Ta có: \(3x^2-x+2\)
\(=3\left(x^2-\dfrac{1}{3}x+\dfrac{2}{3}\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{23}{36}\right)\)
\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{23}{12}\ge\dfrac{23}{12}>0\forall x\)(đpcm)