Tính nhanh: 31/30+43/42+57/56+64/63+...+381/380.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)
\(=\frac{7\cdot11}{6\cdot12}\)
\(=\frac{77}{72}\)
b)
\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=6+\frac{1}{2}-\frac{1}{8}\)
\(=6+\frac{3}{8}\)
\(=\frac{51}{8}\)
Chia thành...a và b nhé.
Bg
a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)
= \(\frac{49.64.81.100.121}{48.63.80.99.120}\)
= \(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)
= \(\frac{7.11}{6.12}\) (chịt tiêu trên dưới)
= \(\frac{77}{72}\)
b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)
Có 6 số hạng (đếm)
= \(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)
= \(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
= \(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
= \(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
= \(6+\frac{1}{2}-\frac{1}{8}\)
= \(\frac{13}{2}-\frac{1}{8}\)
= \(\frac{51}{8}\)
Hơi dài....
\(M=\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}\)
\(\Rightarrow M=\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{20}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{42}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{72}\right)\)
\(\Rightarrow M=6+\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(\Rightarrow M=6+\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\)
\(\Rightarrow M=6+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(\Rightarrow M=6+\left(\frac{1}{3}-\frac{1}{9}\right)=6+\left(\frac{3}{9}-\frac{1}{9}\right)\)
\(\Rightarrow M=6+\frac{2}{9}=\frac{54}{9}+\frac{2}{9}=\frac{56}{9}\)
\(=1+1+1+1+1+1+1+1+1+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=9+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=9+9/10=99/10