K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

3/(n-1)<3/6

n-1>6

n>7

25 tháng 2 2018

Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)

Ta có : 

\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Suy ra : 

\(n-3\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(4\)\(2\)\(5\)\(1\)\(7\)\(-1\)

Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)

30 tháng 6 2015

\(\frac{1}{3}.2^{n-1}+2^n=\frac{7}{3}.64\)

\(\frac{1}{3}.2^n:2^1+2^n=\frac{7}{3}.64\)

\(2^n.\frac{1}{3}.\frac{1}{2}+2^n=\frac{7}{3}.64\)

\(2^n.\frac{1}{6}+2^n.1=\frac{7}{3}.64\)

\(2^n.\left(\frac{1}{6}+1\right)=\frac{7}{3}.64\)

\(2^n.\left(\frac{1}{6}+\frac{6}{6}\right)=\frac{7}{3}.64\)

\(2^n.\frac{7}{6}=\frac{7}{3}.64\)

\(2^n=\frac{7}{3}.64:\frac{7}{6}\)

\(2^n=\frac{7}{3}.\frac{6}{7}.64\)

\(2^n=2.64\)

\(2^n=128\)

\(2^n=2^7\Rightarrow n=7\)

15 tháng 11 2019

vì \(n-1⋮n-1\)\(\Rightarrow2\left(n-1\right)⋮n-1\)\(\Rightarrow2n-2⋮n-1\)

\(\Leftrightarrow\left(2n+3\right)-\left(2n-2\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)mà \(x\in N\)

\(n-1\in\left\{1;5\right\}\)

ta có bảng:

n-115
n26

vậy \(x\in\left\{2;6\right\}\)

15 tháng 11 2019

Có:

2n+3=2(n-1)+5

Vì 2(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 là Ư(5)

=>Ư(5)={-1;1;-5;5}

NX:

+)n-1=-1=>n=0(tm)

+)n-1=1=>n=2(tm)

+)n-1=-5=>n=-4(loại)

+)n-1=5=>n=6(tm)

Vậy...

3 tháng 10 2019

Đề sai thì phải ! Học Lớp 7 mới giải xong bài này !

\(\frac{1}{9}\cdot27^n=3^n\)

\(\frac{1}{9}\cdot\left(3^3\right)^n=3^n\)

\(\frac{1}{9}\cdot3^{3n}=3^n\)

\(\frac{1}{9}=3^n\text{ : }3^{3n}\)

\(\frac{1}{9}=3^{-2n}\)

\(\frac{1}{3^2}=\frac{1}{3^{2n}}\)


\(\Rightarrow\text{ }3^{2n}=3^2\)

\(3^{2n}-3^2=0\)

\(3\left(3^{2n-1}-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3=0\text{ ( Vô lí ) }\\3^{2n-1}-3=0\end{cases}}\)       \(\Rightarrow\text{ }3^{2n-1}=3\)          \(\Rightarrow\text{ }2n-1=1\) \(\Rightarrow\text{ }2n=2\) \(\Rightarrow\text{ }n=1\)

                Vậy \(n=1\)

3 tháng 10 2019

\(\frac{1}{9}\cdot27^n=3^n\)

\(\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)

\(\frac{3^{3n}}{3^2}=3^n\)

\(3^{3n}=3^2\cdot3^n\)

\(3^{3n}=3^{n+2}\)

\(\Rightarrow\text{ }3n=n+2\)

\(3n-n=2\)

\(2n=2\)

\(n=2\text{ : }2\)

\(n=1\)

27 tháng 2 2017

ta có :

\(\frac{n}{n+1}+\frac{2}{n+1}=\frac{n+2}{n+1}=\frac{n+1+1}{n+1}=1+\frac{1}{n+1}\)

để \(\frac{n}{n+1}+\frac{2}{n+1}\)là số tự nhiên

\(\Leftrightarrow\frac{n+2}{n+1}\)là số tự nhiên

\(\Leftrightarrow1+\frac{1}{n+1}\)là số tự nhiên

\(\Rightarrow\)\(\frac{1}{n+1}\)phải là số tự nhiên

\(\Rightarrow\)\(⋮n+1\)

\(\Rightarrow\)n + 1 \(\in\)Ư ( 1 ) 

+ ) n + 1 = 1 => n = 0

+) n + 1 = -1 => n = -2

Vậy n = ...

27 tháng 2 2017

ta có: n/n+1+2/n+1=n+2/n+1=n+1+1/n+1

để n/n+1 +2/n+1 là một số tự nhiên thì 1 phải chia hết cho n+1 suy ra n+1

thuộc ước của 1. ước của 1= 1:-1

ta có nếu n+1=1 suy ra n= 1-1=0

        nếu n+1=-1 suy ra n=-1-1=-2 .vậy n=-2:0 

nhớ kik nha bạn

11 tháng 4 2018

\(B=\frac{3}{n-3}+\frac{n-1}{n-3}-\frac{2-n}{n-3}\)

\(B=\frac{3+n-1-2+n}{n-3}\)

\(B=\frac{2n}{n-3}\)

\(B=\frac{2\left(n-3\right)+6}{n-3}=2+\frac{6}{n-3}\)

Để \(B\in Z\) thì \(\frac{6}{n-3}\in Z\Leftrightarrow n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

n-31-12-23-36-6
n4251609-3

Vậy x = 4 ; 2 ; 5 ; 1 ; 6 ; 0 ; 9 ; -3

11 tháng 4 2018
Tìm n để B có giá trị nguyên