(\(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{x+\sqrt{x}-2}\))
rút gọn có ĐKXĐ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi kiểm tra lại xem cỏ phải mẫu chung của bạn thiếu (\(\sqrt{x}-1\)) thì phải.
GHi nhầm số chứ không phải thiếu.
`P=(x+2)/(xsqrtx+1)+(sqrtx-1)/(x-sqrtx+1)-(sqrtx-1)/(x-1)(x>=0,x ne 1)`
`=(x+2)/((sqrtx+1)(x-sqrtx+1))+(sqrtx-1)/(x-sqrtx+1)-(sqrtx-1)/((sqrtx-1)(sqrtx+1))`
`=(x+2)/((sqrtx+1)(x-sqrtx+1))+((sqrtx-1)(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))-1/(sqrtx+1)`
`(x+2)/((sqrtx+1)(x-sqrtx+1))+((sqrtx-1)(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))-(x-sqrtx+1)/((sqrtx+1)(x-sqrtx+1))`
`=(x+2+x-1-x+sqrtx-1)/((sqrtx+1)(x-sqrtx+1))`
`=(x+sqrtx)/((sqrtx+1)(x-sqrtx+1))`
`=(sqrtx(sqrtx+1))/((sqrtx+1)(x-sqrtx+1))`
`=sqrtx/(x-sqrtx+1)`
ĐKXĐ: \(x>0\)
Ta có: \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\sqrt{x}+1}\)
Điều kiện: x>2
P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)
P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P= \(\dfrac{1}{4}\)
⇔\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)
⇔\(4\sqrt{x}-8=3\sqrt{x}\)
⇔\(\sqrt{x}=8\)
⇔x=64 (TM)
Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+6\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\dfrac{2}{\sqrt{x}+3}\)
\(=\dfrac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
a,\(ĐK:x>0,x\ne1,x\ne4\)
\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)
Thay \(x=1\) vào \(A\), ta được:
\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\cdot\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
b) Để P>0 thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}>0\)
mà \(\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\left(\sqrt{x}-1\right)>0\)
mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1
Kết hợp ĐKXĐ,ta được: x>1
Vậy: Để P>0 thì x>1
1: \(=\left(1+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}-1}:\dfrac{x-9+x-4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{2x+\sqrt{x}-11}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-11\right)}\)
2: \(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
a: ĐKXĐ: x>0; x<>4
\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)
b: P=2/3
=>(4-căn x)/(căn x-2)=2/3
=>2căn x-4=12-3căn x
=>5căn x=16
=>x=256/25
c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)
\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{x+\sqrt{x}-2}\right)\left(x\ge0,x\ne1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}+2+x-\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{2x-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2x-\sqrt{x}-3}=\dfrac{x+8}{2x-\sqrt{x}-3}\)