K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot2}-\dfrac{1}{2\cdot2\cdot2}+\dfrac{1}{2\cdot2\cdot2}-\dfrac{1}{2\cdot2\cdot2\cdot2}+.....+\dfrac{1}{2^{10}}\)

\(A=1-\dfrac{1}{2^{10}}\)

\(A+\dfrac{1}{2^{10}}=1-\dfrac{1}{2^{10}}+\dfrac{1}{2^{10}}=1\left(dpcm\right)\)

Cảm ơn rất nhiều ạyeu

18 tháng 5 2022

\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}\)

Vì \(\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

Do đó \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A< \dfrac{1}{2}\)

Vậy \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}< \dfrac{1}{2}\)

`A = 1/3^2 + 1/4^2 + ... + 1/10^2`

Ta có:

`1/3^2 < 1/(2.3)`

`1/(4^2) < 1/(3.4)`

`...`

`1/(10^2) < 1/(9.10)`

`=> A < 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10 = 1/2 - 1/10 < 1/2`.

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

a)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)

b)

 \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

c)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)

d) tương tự câu 1

10 tháng 11 2023

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

10 tháng 11 2023

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 
17 tháng 3 2022

Ta có: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2022^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)

\(\Rightarrow A< 1-\dfrac{1}{2022}< 1\left(đpcm\right)\)

 

17 tháng 3 2022

Lú toán, mù anh chắc văn giỏi lắm 

25 tháng 4 2023

b\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4

25 tháng 4 2023

Tương tự như vậy với câu a\()\)

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100

1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2

25 tháng 4 2022

undefined

làm vào bài đừng có dùng ngoặc kép như tui nha,tui làm minh họa cho bạn hiểu

26 tháng 2 2022

Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

cộng vế với vê sta đc 

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}< 1\)

Vậy ta có đpcm 

26 tháng 2 2022

undefined

1/2^2<1/1*2

1/3^2<1/2*3

...

1/10^2<1/9*10

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

=>A<9/10

=>A<1