Cho A = 1+2+2 mũ 2 +...+2 mũ 30. Viết A+1 dưới dạng 1 lũy thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+....+2^{30}\)
\(2.A=2+2^2+2^3+2^4+...+2^{30}\)
\(2.A-A=\left(2+2^2+2^3+2^4+...+2^{31}\right)-\left(1+2+2^2+2^3+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(\Rightarrow A+1=2^{31}-1+1\)
\(\Rightarrow A+1=2^{31}\)
A=1+2+22+...+230
2A=2+22+23+...+231
2A-A=(2+22+23+...+231)-(1+2+22+...+230)
A=231-1
=>A+1=231-1+1=231
a=1+2+2^2+.......+2^30
2a=2(1+2+2^2+...+2^30)
2a=2+2^2+2^3+...2^31
2a-a=(2+2^2+2^3+...+2^31)-(1+2+2^2+2^30)
triệt tiêu ta có
a=2^31-1
a+1=2^31-1+1
a+1=2^31
\(A=1+3+3^2+...+3^{41}\)
\(3A=3+3^2+3^3+...+3^{42}\)
\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)
\(2A=3^{42}-1\)
\(A=\dfrac{3^{42}-1}{2}\)
Ta có: \(2A+1\)
\(=2\cdot\dfrac{3^{42}-1}{2}+1\)
\(=3^{42}-1+1\)
\(=3^{42}\)
\(=\left(3^2\right)^{21}\)
\(=9^{21}\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^{101}-2\)
Hay \(A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Học tốt_
a) \(\left(\frac{1}{16}\right)^{25}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2^4}\right)^{25}\div\left(\frac{1}{2}\right)^{30}=\left[\left(\frac{1}{2}\right)^4\right]^{25}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2}\right)^{4.25}\div\left(\frac{1}{2}\right)^{30}\)
\(=\left(\frac{1}{2}\right)^{100}\div\left(\frac{1}{2}\right)^{30}=\left(\frac{1}{2}\right)^{100-30}=\left(\frac{1}{2}\right)^{70}\)
b) \(584^{100}\div292^{100}=\left(584-292\right)^{100}=292^{100}\)
c) \(125^4\cdot16^3=\left(5^3\right)^4\cdot\left(2^4\right)^3=5^{3\cdot4}\cdot2^{4\cdot3}=5^{12}\cdot2^{12}=\left(5+2\right)^{12}=7^{12}\)
a: \(A=8^2\cdot32^4=2^6\cdot2^{20}=2^{26}\)
b: \(B=27^3\cdot9^4\cdot243=3^9\cdot3^8\cdot3^5=3^{22}\)
\(A=1+2+2^2+...+2^{30}\)
\(2A=2+2^2+2^3+...+2^{31}\)
\(2A-A=\left(2+2^2+2^3+...+2^{31}\right)-\left(1+2+2^2+...+2^{30}\right)\)
\(A=2^{31}-1\)
\(A+1=2^{31}\)
A=1+2+22+.....+230 2A=2+22+23+......+231 2A=