Có ai giải bài này hộ mình không? Mình ngu toán quá@~@!!!:
Chứng minh: 31994+31993 - 31992 chia hết cho 11.
Vô cùng cảm ơn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(32^{12}\cdot98^{20}\)
\(=2^{60}\cdot2^{20}\cdot7^{40}\)
\(=2^{80}\cdot7^{40}\)
\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)
b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}\cdot11⋮11\)
Bài 2:
a) Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\cdot10+2^{n+3}\cdot3⋮6\)
b) Ta có: \(4^{13}+32^5-8^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}\cdot5⋮5\)
c) Ta có: \(2014^{100}+2014^{99}\)
\(=2014^{99}\left(2014+1\right)\)
\(=2014^{99}\cdot2015⋮2015\)
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
Giả sử số thứ nhất chia 5 dư 1 thì số thứ năm chia năm dư 5
Hay số thứ năm chia hết cho 5
Tiếp tục giả sử với các trường hợp số thứ hai, ba,... chia năm dư 1
Ta cũng thu được trong 5 số ấy luôn có 1 số chia hết cho 5
Do đó tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Vậy tích của 5 số tự nhiên liên tiếp luôn chia hết cho 5
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
= 12/11
Đặt A = 31994 + 31993 - 31992
= 31992(32 + 3 - 1)
= 31992 . 11 \(⋮\)11
=> A \(⋮\)11