\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn A
b) So sánh: A với |A|
c) Tìm a để A=2
d) Tìm Min của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: a>=0; b>=0; ab<>0; a<>1\(M=\dfrac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{1}{a-1}=\dfrac{1}{a-1}\)
b: M nguyên khi a-1 thuộc {1;-1}
=>a thuộc {2;0}
trình bày rõ ràng ra bạn còn câu b nữa
a)
ĐK: \(a>0\)
\(P=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\\ =\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\\ =a+\sqrt{a}-2\sqrt{a}-1+1\\ =a-\sqrt{a}\)
b)
\(a>1\Rightarrow\sqrt{a}-1>0\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\)
\(\Rightarrow\left|P\right|=P\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
b) Ta có: \(Q-1=\dfrac{\sqrt{a}+1}{\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}}=\dfrac{1}{\sqrt{a}}>0\forall a\) thỏa mãn ĐKXĐ
nên Q>1
a) \(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\left(đk:a\ge0,a\ne1\right)\)
\(=\dfrac{2a+1-\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left[\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=\dfrac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(a-\sqrt{a}+1-\sqrt{a}\right)\)
\(=\dfrac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(\sqrt{a}-1\right)^2\)
\(=\sqrt{a}-1\)
b) \(A=\sqrt{a}-1=6\)
\(\Leftrightarrow\sqrt{a}=7\Leftrightarrow a=49\)
a) Ta có: \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-2\sqrt{a}-1+1\)
\(=a-\sqrt{a}\)
c) Để A=2 thì \(a-\sqrt{a}-2=0\)
\(\Leftrightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)
\(\Leftrightarrow a=4\)