Tìm số tự nhiên x biết:
a) 3x - 1 + 5 . 3x - 1 = 162
b) 2x + 3 + 2x = 144
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x-9+26 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
=>\(x\in\left\{4;2;5;1;16;-10;29;-23\right\}\)
b: =>6x+38 chia hết cho 2x-3
=>6x-9+47 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;47;-47\right\}\)
=>\(x\in\left\{2;1;25;-22\right\}\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a) \(18-\left(2x+5\right)=9\)
\(2x+5=18-9\)
\(2x+5=9\)
\(2x=9-5\)
\(2x=4\)
\(x=2\)
a) \(18-\left(2x+5\right)=9\)
\(\Rightarrow2x+5=18-9=9\)
\(\Rightarrow2x=9-5=4\Rightarrow x=4:2=2\)
b) \(23x-4=32\Rightarrow23x=32+4=36\Rightarrow x=\dfrac{36}{23}\)
c) \(\left(3x+2\right)^2=64\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
d) \(x\left(2x-12\right)=0\Rightarrow6x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
\(a,\Rightarrow5x+3x^2-3x^2-x+2=6\\ \Rightarrow4x=4\Rightarrow x=1\\ b,\Rightarrow\left(2x+\dfrac{1}{2}-1+2x\right)\left(2x+\dfrac{1}{2}+1-2x\right)=2\\ \Rightarrow\dfrac{3}{2}\left(4x-\dfrac{1}{2}\right)=2\\ \Rightarrow6x-\dfrac{3}{4}=2\\ \Rightarrow6x=\dfrac{11}{4}\\ \Rightarrow x=\dfrac{11}{24}\\ c,\Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a: Ta có: \(x\left(2x-3\right)-\left(2x-1\right)\left(x+5\right)=17\)
\(\Leftrightarrow2x^2-3x-2x^2-10x+x+5=17\)
\(\Leftrightarrow-12x=12\)
hay x=-1
Bài 1:
\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)
Bài 2:
\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)
chịu
hox tốt