K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Sai đề rồi

10 tháng 8 2017

ko sai nhé

Áp dụng BĐT Cauchy-Schwarz dạng ENgel ta có:

\(VT=\frac{3}{ab+bc+ca}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{\sqrt{6}^2}{2\left(ab+bc+ca\right)}+\frac{\sqrt{2}^2}{a^2+b^2+c^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(a+b+c\right)^2}\approx15>14\)

23 tháng 12 2017

cảm ơn

Câu a dùng hằng đẳng thức mở rộng là được,tối rồi lười lắm,t giúp câu b

20 tháng 5 2018

giúp t câu b với

1 tháng 9 2020

Câu a bạn chứng minh được rồi là xong nha !!!!!!!

Câu b) 

\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)

\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được: 

=>   \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)

=>   \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

DẤU "=" Xảy ra <=>    \(a=b=c\)

Vậy ta có ĐPCM !!!!!!!!

19 tháng 5 2018

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

25 tháng 5 2018

Đúng rầu đấy

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

Đặt:


\(A=\frac{3}{ab+bc+ac}+\frac{2}{a^2+b^2+c^2}=\frac{3}{ab+bc+ac}+\frac{2}{(a+b+c)^2-2(ab+bc+ac)}=\frac{3}{ab+bc+ac}+\frac{2}{1-2(ab+bc+ac)}\)

Đặt \(ab+bc+ac=t\Rightarrow A=\frac{3}{t}+\frac{2}{1-2t}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow t=ab+bc+ac\leq \frac{1}{3}\)

Xét:

\(A-14=\frac{3}{t}+\frac{2}{1-2t}=\frac{3}{t}-9+\frac{2}{1-2t}-5\)

\(=\frac{3-9t}{t}+\frac{10t-3}{1-2t}>\frac{3-9t}{t}+\frac{9t-3}{1-2t}=3(1-3t)(\frac{1}{t}-\frac{1}{1-2t})=\frac{3(1-3t)^2}{t(1-2t)}>0\) với mọi \(t>0; t\leq \frac{1}{3}\)

Do đó: \(A>14\) (đpcm).